Convolutional neural networks

-->

Please access the video via one of the following two ways

Download the lecture notes here: Notes

Variational problems

Lemma 12

Assume that \(u\) is continuous in \((0,1)\), then the following statements are equivalent

(1) \(u(x)=0\).

(2) \(\int_{0}^{1} u(x) v(x) d x=0\) for any smooth (compactly supported) function \(v\) in \((0,1)\).

Define function \(v:[0,1] \rightarrow R\) and define space

\[ V=\{v: v \text { is continuous and } v(0)=v(1)=0\} \]

Given any \(f:[0,1] \rightarrow R\), consider

\[ J(v)=\frac{1}{2} \int_{0}^{1}\left|v^{\prime}\right|^{2} d x-\int_{0}^{1} f v d x \]

Find \(u \in V\) such that

(38)\[ u=\underset{v \in V}{\arg \min } J(v) \]

which is equivalent to: Find \(u \in V\) such that

\[\begin{split} \left\{\begin{array}{l} -u^{\prime \prime}=f, 0<x<1, \\ u(0)=u(1)=0 . \end{array}\right. \end{split}\]

Proof. For any \(v \in V, t \in R\), let \(g(t)=J(u+t v)\). Since \(u=\arg \min _{v \in V} J(v)\) means \(g(t) \geq g(0) .\) Hence, for any \(v \in V, 0\) is the global minimum of the function \(g(t)\). Therefore \(g^{\prime}(0)=0\) implies

\[ \int_{0}^{1} u^{\prime} v^{\prime} d x=\int_{0}^{1} f v d x \quad \forall v \in V \]

By integration by parts, which is equivalent to

\[ \int_{0}^{1}\left(-u^{\prime \prime}-f\right) v d x=0 \quad \forall v \in V \text {. } \]

By variational principal Lemma 12 , we obtain

\[\begin{split} \left\{\begin{array}{l} -u^{\prime \prime}=f, 0<x<1, \\ u(0)=u(1)=0 . \end{array}\right. \end{split}\]

Let \(V_{h}\) be finite element space and \(\left\{\varphi_{1}, \varphi_{2}, \cdots \varphi_{n}\right\}\) be a nodal basis of the \(V_{h} .\) Let \(\left\{\psi_{1}, \psi_{2}, \cdots, \psi_{n}\right\}\) be a dual basis of \(\left\{\varphi_{1}, \varphi_{2}, \cdots \varphi_{n}\right\}\), namely \(\left(\varphi_{i}, \psi_{j}\right)=\delta_{i j} .\)

\[ J\left(v_{h}\right)=\frac{1}{2} \int_{0}^{1}\left|v_{h}^{\prime}\right|^{2} d x-\int_{0}^{1} f v_{h} d x . \]

Let

\[ u_{h}=\sum_{i=1}^{n} v_{i} \varphi \]

then

\[ u_{h}=\underset{v h \in V_{h}}{\arg \min } J\left(v_{h}\right) \]

is equivalent to: Find \(u_{h} \in V_{h}\)

\[ a\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle \quad \forall v_{h} \in V_{h} \]

where

\[ a\left(u_{h}, v_{h}\right)=\int_{0}^{1} u_{h}^{\prime} v_{h}^{\prime} d x \]

Which is equivalent to: Find \(u_{h} \in V_{h}\)

\[ a\left(u_{h}, v_{h}\right)=\left\langle f, v_{h}\right\rangle \quad \forall v_{h} \in V_{h} \]

which is equivalent to solving \(\underline{A} \mu=b\), where \(\underline{A}=\left(a_{i j}\right)_{i j}^{n}\) and \(a_{i j}=a\left(\varphi_{j}, \varphi_{i}\right)\) and \(b_{i}=\int_{0}^{1} f \varphi_{i} d x .\) Namely

\[\begin{split} \frac{1}{h}\left(\begin{array}{ccccc} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 & 2 & -1 \\ & & & -1 & 2 \end{array}\right)\left(\begin{array}{c} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{n} \end{array}\right)=\left(\begin{array}{c} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{array}\right) \end{split}\]

Which can be rewritten as

(39)\[ \frac{-\mu_{i-1}+2 \mu_{i}-\mu_{i+1}}{h}=b_{i}, \quad 1 \leq i \leq n, \quad \mu_{0}=\mu_{n+1}=0 \]

Using the convolution notation, (39) can be written as $\(A * \mu=b\)\( where \)A=\frac{1}{h}[-1,2,-1]$

Introduction

Let us first briefly describe finite difference methods and finite element methods for the numerical solution of the following boundary value problem

(40)\[ -\Delta u=f, \text { in } \Omega, \quad u=0 \text { on } \partial \Omega, \quad Q=(0,1)^{2} \]

For the \(x\) direction and the \(y\) direction, we consider the partition:

\[\begin{split} \begin{aligned} &0=x_{0}<x_{1}<\cdots<x_{n+1}=1, \quad x_{i}=\frac{j}{n+1}, \quad(i=0, \cdots, n+1) \\ &0=y_{0}<y_{1}<\cdots<y_{n+1}=1, \quad y_{j}=\frac{j}{n+1}, \quad(j=0, \cdots, n+1) \end{aligned} \end{split}\]

Such a uniform partition in the \(x\) and \(y\) directions leads us to a special example in two dimensions, a uniform square mesh \(\mathbb{R}_{h}^{2}=\{(i h, j h) ; i, j \in \mathbb{Z}\}\). Let \(\Omega_{h}=\Omega \cap \mathbb{R}_{h}^{2}\), the set of interior mesh points and \(\partial \Omega_{h}=\partial \Omega \cap \mathbb{R}_{h}^{2}\), the set of boundary mesh points.\

../../_images/img12.png

Fig. 15 Two-dimensional uniform grid for finite element and finitedifference

Finite element methods

We consider two finite elements: continuous linear element and bilinear element. These two finite element methods find \(u_{h} \in V_{h}\) such that

\[ \left(\nabla u_{h}, \nabla v_{h}\right)=\left(f, v_{h}\right), \forall v_{h} \in V_{h} \]

The above formulation can be written as

\[ \underline{A u}=\underline{f} \]

with \(\underline{A}_{(j-1) n+i,(l-1) n+k}=\left(\nabla \phi_{k l}, \nabla \phi_{i j}\right), f_{(j-1) n+i,(l-1) n+k}=\left(f, \phi_{i j}\right) .\)

Basis functions \(\phi_{i j}\) satisfy

\[ \phi_{i j}\left(x_{k}, y_{l}\right)=\delta_{(i, j),(k, l)} \]

Linear finite element

Continuous linear finite element discretization of (40) on the left triangulation in Fig 1.2. The discrete space for linear finite element is

\[ \mathcal{V}_{h}=\left\{v_{h}:\left.v_{h}\right|_{K} \in P_{1}(K) \text { and } v_{h} \text { is globally continuous }\right\} \]

Denote \(E_{i, j}=\left[x_{i}, x_{i+1}\right] \times\left[y_{i}, y_{i+1}\right]=K_{i, j}^{U} \cup K_{i, j}^{D} .\) For linear element case,

image

where

\[\begin{split} A = \begin{pmatrix} 0 & -1 & 0\\ -1 & 4 & -1\\ 0 & -1 & 0 \end{pmatrix} \end{split}\]

and \(A * u \) is given by (41)

It is easy to verify that the formulation for the linear element method is

(41)\[ 4 u_{i, j}-\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}\right)=f_{i, j}, \quad u_{i, j}=0 \]

if \(i\) or \(j \in\{0, n+1\}\)

where

\[ f_{i, j}=\int_{\Omega} f(x, y) \phi_{i, j}(x, y) \mathrm{d} x \mathrm{~d} y \approx h^{2} f\left(x_{i}, y_{j}\right) \]

Proposition

The mapping A* has following properties

1- A is symmetric, namely

\[ (A * u, v)_{l^{2}}=(u, A * v)_{l^{2}} . \]

2- \((A * v, v)_{F}>0\), if \(v \neq 0\).

3- \(A * u=f\) if and only if

\[ u \in \underset{v \in \mathcal{V}_{h}}{\arg \min } J(v)=\frac{1}{2}(A * v, v)-(f, v) \]

4- The eigenvalues \(\lambda_{k l}\) and eigenvectors \(u^{k l}\) of A are given by

\[\begin{split} \begin{gathered} \lambda_{k l}=4\left(\sin ^{2} \frac{k \pi}{2(n+1)}+\sin ^{2} \frac{l \pi}{2(n+1)}\right), \\ u_{i j}^{k l}=\sin \frac{k i \pi}{n+1} \sin \frac{l j \pi}{n+1}, 1 \leq i \leq n, 1 \leq j \leq n, \end{gathered} \end{split}\]

and \(\rho(A)<8 .\) Furthermore,

\[ \lambda_{n, n}=8 \cos ^{2} \frac{\pi}{2(n+1)} \approx 8\left(1-\left(\frac{\pi}{2(n+1)}\right)^{2}\right) \approx 8-\frac{2 \pi^{2}}{(n+1)^{2}} \]

Bilinear element

Continuous bilinear finite element discretization of (40) on the right mesh in Fig. 1.2. The discrete space for linear finite element is

\[ \mathcal{V}_{h}=\left\{v_{h}:\left.v_{h}\right|_{K} \in\{1, x, y, x y\} \text { and } v_{h} \text { is globally continuous }\right\} \]

For bilinear element case, we have

\[\begin{split} \begin{aligned} \left(\nabla \mathbf{u}_{h}, \nabla \mathbf{v}_{h}\right)=& \sum_{i, j=1}^{n} \int_{E_{i, j}} \nabla \mathbf{u}_{h}, \nabla \mathbf{v}_{h} d x d y \\ =& \sum_{i, j=1}^{n} \int_{E_{i, j}}\left(\frac{\left(u_{i+1, j}-u_{i, j}\right)\left(y_{j+1}-y\right)}{h^{2}}+\frac{\left(u_{i, j+1}-u_{i+1, j+1}\right)\left(y-y_{j}\right)}{h^{2}}\right) \\ &\left(\frac{\left(v_{i+1, j}-v_{i, j}\right)\left(y_{j+1}-y\right)}{h^{2}}+\frac{\left(v_{i, j+1}-v_{i+1, j+1}\right)\left(y-y_{j}\right)}{h^{2}}\right) \\ &+\left(\frac{\left(u_{i, j+1}-u_{i, j}\right)\left(x_{i+1}-x\right)}{h^{2}}+\frac{\left(u_{i+1, j}-u_{i+1, j+1}\right)\left(x-x_{i}\right)}{h^{2}}\right) \\ =&\left(\frac{\left(v_{i, j+1}-v_{i, j}\right)\left(x_{i+1}-x\right)}{h^{2}}+\frac{\left(v_{i+1, j}-v_{i+1, j+1}\right)\left(x-x_{i}\right)}{h^{2}}\right) d x d y \end{aligned} \end{split}\]

where \(A=\left(\begin{array}{ccc}-1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1\end{array}\right)\) and \(A * u\) is given by (42)

And we have

(42)\[ 8 u_{i j}-\left(u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}+u_{i+1, j+1}+u_{i-1, j-1}+u_{i-1, j+1}+u_{i+1, j-1}\right)=f_{i, j} \]

and \(u_{i, j}=0\) if \(i\) or \(j \in\{0, n+1\} .\)