Course information, requirements and reference¶
from IPython.display import IFrame
IFrame(src="https://cdnapisec.kaltura.com/p/2356971/sp/235697100/embedIframeJs/uiconf_id/41416911/partner_id/2356971?iframeembed=true&playerId=kaltura_player&entry_id=1_b5pq3bnx&flashvars[streamerType]=auto&flashvars[localizationCode]=en&flashvars[leadWithHTML5]=true&flashvars[sideBarContainer.plugin]=true&flashvars[sideBarContainer.position]=left&flashvars[sideBarContainer.clickToClose]=true&flashvars[chapters.plugin]=true&flashvars[chapters.layout]=vertical&flashvars[chapters.thumbnailRotator]=false&flashvars[streamSelector.plugin]=true&flashvars[EmbedPlayer.SpinnerTarget]=videoHolder&flashvars[dualScreen.plugin]=true&flashvars[hotspots.plugin]=1&flashvars[Kaltura.addCrossoriginToIframe]=true&&wid=1_131rzy9w",width='800', height='500')
Course Instructor and Assistants¶
Instructor: Prof. Jinchao Xu
Email: jinchao.xu@kaust.edu
Grader: Boqian Shen
Email: Boqian.shen@kaust.edu
Course Description¶
Class time (recorded videos):¶
lectures providing motivations, description and mathematical analysis of deep learning algorithms
hands-on coding exercises for python programming for deep learning algorithms
Detailed course materials and forms:¶
pre-recorded video lectures
typed lecture notes
live discussions
programming subroutines
theoretical and practical exercises
Interactive programming environment:¶
Click the “Binder” icon under Rocket icon:
!!! Attention: the interactive programming environment won’t save your code
Course Description and Syllabus¶
Main topics include:
Basics of machine learning and probability
Logistic regression and support vector machine
Gradient descent method and training algorithms
Polynomial approximation and Weierstrass theorem
Linear finite element spaces
Deep neural networks and mathematical properties
Convolutional neural networks
Multigrid methods and MgNet
PyTorch and deep learning for image classification
Other applications
- Syllabus
Grading Policies¶
Homework and programing assignments (collecting every week) (40%)
midterm exam (20%)
final projects and exam (40%)
Prerequisites, References and Resources¶
Prerequisites¶
Linear algebra;
Multi-variable calculus;
Some programming experiences are helpful. For those who are not familiar with Python, see tutorials in:
References and resources:¶
Xu J. Deep Neural Networks and Multigrid Methods, (Lecture Notes at Penn State), 2019. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press, 2016. Friedman J, Hastie T, Tibshirani R. The elements of statistical learning. New York: Springer series in statistics, 2001. CS231n (Stanford): http://cs231n.stanford.edu