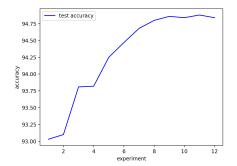
Deep learning seminar

August 29, 2019

1 Paper discussion


Learning Structured Sparsity in Deep Neural Networks

- why
 - 1. reduce computational cost
 - 2. speed up and acceleration
- how
 - 1. non-structured sparse regularization
 - (a) sparsity regularization/ connection pruning cons: produce non-structured random connectivity and no acceleration
 - (b) low rank approximation cons: the structures of the layers are fixed during fine-tuning such that costly reiterations of decomposing and fine-tuning are required
 - 2. structured sparse regularization
- inspiration
 - 1. redundancy across filters and channels
 - 2. shapes of filters are usually fixed
 - 3. depth of the network is critical
- propose Structured Sparsity Learning (SSL) method to adaptively adjust mutiple structures in DNN

2 Our sparse training result

Table 1: Accuracy and sparsity record

Iteration	SGD		l1-prox	
number	accuracy(%)	sparsity(%)	accuracy(%)	sparsity(%)
1	93.03	0	93.10	38.34
2	93.81	38.34	93.82	56.71
3	94.25	56.71	94.47	70.59
4	94.68	70.59	94.80	75.51
5	94.86	75.51	94.84	76.27
6	94.88	76.27	94.84	68.83

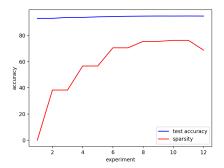


Figure 1: Results