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Introduciton

Recent attempts to improve SGD can be broadly categorized into

two approaches:

(1) adaptive learning rate schemes,such as AdaGrad and Adam,

(2) accelerated schemes, such as Polyak heavyball and Nesterov

momentum.

Both approaches make use of the accumulated past gradient

information to achieve faster convergence. However, to obtain their

improved performance in neural networks often requires costly

hyperparameter tuning.
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Figure 1: Lookahead psuedocode
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Figure 1 shows the trajectory of both the fast weights and slow weights

during the optimization of a ResNet-32 model on CIFAR-100. While

the fast weights explore around the minima, the slow weight update

pushes Lookahead aggressively towards an area of improved test

accuracy.
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Slow weights trajectory

The slow weights as an exponential moving average (EMA) of the

final fast weights within each inner-loop, regardless of the inner

optimizer. After k inner-loop steps we have:

φt+1 = φt + α(θt ,k − φt)

= α[θt ,k + (1− α)θt−1,k + ...+ (1− α)t−1θ0,k ] + (1− α)tφ0 (0.1)
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Fast weights trajectory

Within each inner-loop, the trajectory of the fast weights depends

on the choice of underlying optimizer. Given an optimization algorithm

A that takes in an objective function L and the current mini-batch

training examples d, we have the update rule for the fast weights:

θt ,i+1 = θt ,i + A(L, θt ,i ,d) (0.2)
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Computational complexity

Lookahead has a constant computational overhead due to

parameter copying and basic arithmetic operations that is amortized

across the k inner loop updates. The number of operations is

O((k + 1/k)) times that of the inner optimizer. Lookahead maintains a

single additional copy of the number of learnable parameters in the

model.
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Selecting the Slow Weights Step Size

The step size in the direction θt ,k − θt ,0 is controlled by α. By

taking a quadratic approximation of the loss, we present a principled

way of selecting α.

Proposition 1 (Optimal slow weights step size). For a quadratic

loss functionL(x) = 1
2xT Ax − bT x the step size α∗ that minimizes the

loss for two points θt ,0 and θt ,k ;k is given by:

α∗ = arg min
α

L(θt ,0 + α(θt ,k − θt ,0)) =
(θt ,0 − θ∗)T A(θt ,0 − θt ,k )

(θt ,0 − θt ,k )T A(θt ,0 − θt ,k )
(0.3)

where θ∗ = A−1b minimizes the loss.
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Proof Compute the dderivative with respect to α

∇L(θt ,0+α(θt ,k−θt ,0)) = (θt ,k−θt ,0)
T A(θt ,0+α(θt ,k−θt ,0))−(θt ,k−θt ,0)

T b

(0.4)

Setting the derivative to 0 and using b = Aθ∗:

α[(θt ,k − θt ,0)
T A(θt ,k − θt ,0)] = θt ,k − θt ,0)

T A(θ∗ − θt ,0)

⇒α∗ = arg min
α

L(θt ,0 + α(θt ,k − θt ,0)) =
(θt ,0 − θ∗)T A(θt ,0 − θt ,k )

(θt ,0 − θt ,k )T A(θt ,0 − θt ,k )

(0.5)
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Convergence Analysis

Model:Noisy quadratic model

L̂ =
1
2
(x − c)T A(x − c) (0.6)

with c ∼ N(x∗,
∑

). A and
∑

is diagonal,x∗ = 0,We use ai and σ2
i to

denote the diagonal elements of A and
∑

. Taking the expectation over

c, the expected loss of the iterates θ(t) is,

L(θ(t)) = E [L̂(θ(t))] =
1
2

E [
∑

i

ai(θ
(t)2

i + σ2
i )]

=
1
2

∑
i

ai(E [θ
(t)
i ]2 + V [θ

(t)
i ] + σ2

i ) (0.7)
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Proposition 2 (Lookahead variance reduction). Let 0 < γ < 2
L be

the learning rate of SGD and Lookahead where L = max ai . In the

noisy quadratic model, the iterates of SGD and Lookahead with SGD

as its inner optimizer converge to 0 in expectation and the variances

converge to the following fixed points:

V ∗
SGD =

γ2A2 ∑2

I − (I − γA)2 (0.8)

V ∗
LA =

α2(I − (I − γA)2k )

α2(I − (I − γA)2k ) + 2α(1− α)(I − (I − γA)k )
V ∗

SGD (0.9)
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Stochastic dynamics of SGD From Wu et al. [42], we can compute

the dynamics of SGD with learning rate γ as follows:

E [x t+1] = (I − γA)E [x (t)] (0.10)

V [x t+1] = (I − γA)2V [x (t)] + γ2A2
∑

(0.11)
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The dynamics of the slow weights of Lookahead.

Lemma 1 The Lookahead slow weights have the following

trajectories:

E [φt+1] = [1− α+ α(I − γA)k ]E [φt ] (0.12)

v [φt+1] = [1−α+α(I − γA)k ]2V [φt ] +α2
k−1∑
i=0

(I − γA)2iγ2A2
∑

(0.13)
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Proof

E [φt+1] = (1− α)E [φt ] + αE [θt ,k ]

= (1− α)E [φt ] + α(I − γA)kE [φt ]

= [1− α+ α(I − γA)k ]E [φt ] (0.14)

For the variance:

V [φt+1] = (1− α)2V [φt ] + α2V [θt ,k ] + 2α(1− α)cov(φt , θt ,k ) (0.15)
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For simplicity, we work with a single element, θ, of the vector θ (as

A is diagonal, each element evolves independently).

cov(θt ,k−1, θt ,k ) = E [(θt ,k−1 − E [θt ,k−1])(θt ,k − E [θt ,k ])]

= E [((θt ,k−1 − E [θt ,k−1])(θt ,k − (1− γa)E [θt ,k−1]))]

= E [θt ,k−1θt ,k ]− (1− γa)E [θt ,k−1]
2

= E [(1− γa)θ2
t ,k−1]− (1− γa)E [θt ,k−1]

2

= (1− γa)V [θt ,k−1] (0.16)

cov(φt , θt ,k ) = (I − γA)kV [φt ] (0.17)

V [φt+1] = (1− α)2V [φt ] + α2V [θt ,k ] + 2α(1− α)cov(φt , θt ,k ) (0.18)

Zhu Jianqing ( BJUT ) September 10, 2019 15 / 23



We now proceed with the proof of Proposition 2.

Proof. First note that if the learning rate is chosen as specified,

then each of the trajectories is a contraction map. By Banach’s fixed

point theorem,they each have a unique fixed point. Clearly the

expectation trajectories contract to zero in each case. For the variance

we can solve for the fixed points directly. For SGD,

V ∗
SGD = (1− γA)2V ∗

SGD + γA2
∑
⇒ V ∗

SGD =
γ2A2 ∑

I − (I − γA)2 (0.19)
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For Lookahead,we have,

V ∗
LA = [1− α+ α(I − γA)k ]2V ∗

LA + α2
k−1∑
i=0

(I − γA)2iγ2A2
∑

⇒ V ∗
LA =

α2 ∑k−1
i=0 (I − γA)2i

I − [(1− α)I + α(I − γA)k ]2
γ2A2

∑
V ∗

LA =
α2(I − (I − γA)2k)

I − [(1− α)I + α(I − γA)k ]2
γ2A2 ∑

I − (I − γA)2

V ∗
LA =

α2(I − (I − γA)2k)
α2(I − (I − γA)2k ) + 2α(1− α)(I − (I − γA)k )

γ2A2 ∑
I − (I − γA)2

(0.20)
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Experiments

CIFAR-10 and CIFAR-100

Lookahead achieves significantly faster convergence throughout

training even though the learning rate schedule is optimized for the

inner optimizer.
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Experiments

ImageNet
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Experiments

LSTM
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Empirical analysis

Robustness to inner optimization algorithm,k and α

Lookahead can train with higher learning rates on the base optimizer

with little tuning on k and α.
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Empirical analysis

Inner loop and outer loop evaluation
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Thank you!
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