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Abstract

Deep neural networks with rectified linear units (ReLU) are getting more and more popular due to its
universal representation power and successful applications. Some theoretical progresses on deep ReLU
network approximations for functions in Sobolev space and Korobov space have recently been made by [D.
Yarotsky, Neural Network, 94:103-114, 2017] and [H. Montanelli and Q. Du, SIAM J Math. Data Sci.,
1:78-92, 2019]. Following similar approaches, we show that deep networks with rectified power units (RePU)
can give better approximations for smooth functions than deep ReLU networks. Our analysis bases on
classical polynomial approximation theory and some efficient algorithms proposed in this paper to convert
polynomials into deep RePU networks of optimal size without any approximation error. Comparing to the
results on ReLU network, the sizes of RePU networks required to approximate functions in Sobolev space
and Korobov space with an error tolerance ε, by our constructive proofs, are in general O(log 1

ε ) times
smaller than the sizes of corresponding ReLU networks. Our constructive proofs reveal the relation between
the depth of the RePU network and the “order” of polynomial approximation. Taking into account some
other good properties of RePU networks, such as being high-order differentiable and requiring less arithmetic
operations, we advocate the use of deep RePU networks for problems where the underlying high dimensional
functions are smooth or derivatives are involved in the loss function.

Keywords: deep neural network, high dimensional approximation, sparse grids, rectified linear unit,
rectified power unit, rectified quadratic unit

1. Introduction

Artificial neural network, whose origin may date back to 1940s[1], is one of the most powerful tools in
the field of machine learning. Especially, it became dominant in a lot of applications after the seminar works
by Hinton et al.[2] and Bengio et al.[3] on efficient training of deep neural networks (DNNs), which pack up
multi-layers of units with some nonlinear activation function. Since then, DNNs have greatly boosted the
developments of image classification, speech recognition, computational chemistry and numerical solutions
of high-dimensional partial differential equations, etc., see e.g. [4][5][6][7][8] to name a few.

The success of DNNs relies on two facts: 1) DNN is a powerful tool for general function approximation; 2)
Efficient training methods are available to find minimizers with good generalization ability. In this paper, we
focus on the first fact. It is known that artificial neural networks can approximate any C0 and L1 functions
with any given error tolerance, using only one hidden layer (see e.g. [9][10][11]). However, people have
realized recently that deep networks have better representation power[12][13][14]. One of the commonly
used activation functions with DNN is the so called rectified linear unit (ReLU)[15], which is defined as
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σ(x) = max(0, x). Telgarsky [13] gave a simple and elegant construction showing that for any k, there exist
k-layer, O(1) wide ReLU networks on one-dimensional data, which can express a sawtooth function on [0, 1]
with O(2k) oscillations. Moreover, such a rapidly oscillating function cannot be approximated by poly(k)-
wide ReLU networks with o(k/ log(k)) depth. Following this approach, several other works proved that
deep ReLU networks have better approximation than shallow ReLU networks [16][17][18][19]. In particular,
for Cβ-differentiable d-dimensional functions, Yarotsky [18] proved that the number of parameters needed

to achieve an error tolerance of ε is O(ε−
d
β log 1

ε ). Petersen and Voigtlaender [19] proved that for a class
of d-dimensional piecewise Cβ continuous functions with the discontinuous interfaces being Cβ continuous

also, one can construct a ReLU neural network with O((1 + β
d ) log2(2 + β)) layers, O(ε−

2(d−1)
β ) nonzero

weights to achieve ε-approximation. The complexity bound is sharp. For analytic functions, E and Wang
[20] proved that using ReLU networks with fixed width d+ 4, to achieve an error tolerance of ε, the depth
of the network depends on log 1

ε instead of ε itself. Note that there is also an exponential dependence on
the dimension d.

One basic fact on ReLU networks is that function x2 can be approximated within any error ε > 0 by a
ReLU network having the depth, the number of weights and computation units all of order O(log 1

ε ). This
fact has been used by several groups (see e.g. [16][18]) to analyze the approximation property of general
smooth functions using ReLU networks. In this paper, we extend the analysis to deep neural networks using
rectified power units (RePUs), which are defined as

σs(x) =

{

xs, x ≥ 0,

0, x < 0,
, s ∈ N, (1.1)

where N denotes the set of all positive integers. Note that σ1 is the commonly used ReLU function. We
call σ2, σ3 rectified quadratic unit (ReQU) and rectified cubic unit (ReCU), respectively. We show that
deep neural networks using RePUs(s ≥ 2) as activation functions have better approximation property for
smooth functions than those using ReLUs. By replacing ReLU with RePU, the functions x, x2 and xy can
be exactly represented with no approximation error using networks having just a few nodes and nonzero
weights. Based on this, we build an efficient algorithm to explicitly convert any function from a polynomial
space into a RePU network having approximately same number of coefficients. This allows us to obtain a
better upper bound of the best neural network approximation for general smooth functions using classical
polynomial approximation theories.

For high dimensional problems, to be tractable, the intrinsic dimension usually do not grow as fast as
the observation dimension. In other words, the problems have low dimensional structure. A particular
example is the high-dimensional smooth functions with bounded mixed derivatives, for which sparse grid
(or hyperbolic cross) approximation is a very popular approximation tool [21][22][23][24]. In the past few
decades, sparse grid method and hyperbolic cross approximations have been applied to many applications,
for example, numerical integration and interpolation[21][25][26],[27], solving partial differential equations
(PDEs)[28][29][30][31][32], computational chemistry[23][33][34][35], uncertainty quantification[36][37][38], etc.
Recently, the connection between linear finite element sparse grids and deep ReLU neural networks has been
used by Montanelli and Du [39] to obtain an upper bound of deep ReLU network approximation of high
dimensional functions with bounded mixed derivatives. The relations between deep ReLU networks and
general linear finite elements have also been studied by He et al.[40]. We use a similar but different ap-
proach. In our approach, we approximate multivariate functions in high order Korobov space using sparse
grid Chebyshev interpolation [26] for the interpolation problem, and using hyperbolic cross spectral approx-
imation for the projection problem [24][29]. And then convert the high-dimensional polynomial into a ReQU
network, instead of a ReLU network, to avoid adding an extra factor log 1

ε in the size of the neural network.
We find that RePU networks have the following good properties:

• The RePU neural networks provide better approximations for smooth functions comparing to ReLU
neural network approximations. To achieve same accuracy, the RePU network approximation needs
less number of layers and smaller network size. For example, for any analytic function, we can construct
a ReQU network with no more than O

(
log2

(
log 1

ε

))
layers, and no more than O

(
1
γ log

(
1
ε

) )
nonzero
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weights to approximate it with error ε, where γ = O
(
log(log 1

ε )
)
. More results are given in Theorem

4, 8, 10 (cp. Yarotsky [18], E and Wang [20], Petersen and Voigtlaender [19], Montanelli and Du [39]).

• The functions represented by RePU networks are smooth functions, so they naturally fit in the places
where derivatives are involved in the loss function.

• Compared to other high-order differentiable activation functions, such as logistic, tanh, softplus, sinc
etc., RePUs are more efficient in terms of number of arithmetic operations needed to evaluate, especially
the rectified quadratic unit.

Based on the facts above, we advocate the use of deep RePU networks in places where the functions to be
approximated are smooth.

The remaining part of this paper is organized as follows. In Section 2, we first show how to approximate
univariate smooth functions using RePU networks by converting best polynomial approximations into RePU
networks. Then we use a similar approach to analyze the ReQU network approximation for multivariate
functions in weighted Sobolev space in Section 3. After that, we show how high-dimensional functions with
sparse polynomial approximations can be well approximated by ReQU networks in Section 4. We end the
paper by a short summary in Section 5.

2. Approximation of univariate smooth functions by deep RePU networks

We first introduce some symbols and notations related to neural networks. Denote by N the set of all
positive integers, N0 := {0} ∪ N. Let d, L ∈ N, we denote a neural network Φ with input of dimension d,
number of layer L, by a matrix-vector sequence

Φ =
(
(A1, b1), · · · , (AL, bL)

)
, (2.1)

where N0 = d, N1, · · · , NL ∈ N, Ak are Nk ×Nk−1 matrices, and bk ∈ R
Nk .

If Φ is a neural network, and ρ : R → R is an arbitrary activation function, then define

Rρ(Φ) : R
d → R

NL , Rρ(Φ)(x) = xL, (2.2)

where Rρ(Φ)(x) is defined as







x0 := x,

xk := ρ(Akxk−1 + bk), k = 1, 2, . . . , L− 1,

xL := ALxL−1 + bL,

(2.3)

and
ρ(y) :=

(
ρ(y1), · · · , ρ(ym)

)
, ∀ y = (y1, · · · , ym) ∈ R

m.

We use three quantities to account the complexity of the neural network: number of hidden layers, number
of nodes(i.e. activation units), and number of nonzero weights, which are L − 1,

∑L−1
k=1 Nk and number of

non-zeros in {(Ak, bk), k = 1, . . . , L}, respectively, for the neural network defined in (2.1). For convenience,
we denote by #A the number of nonzero components in A for a given matrix or vector A. For the neural
network Φ defined in (2.1), we also denote its number of nonzero weights as #Φ :=

∑L
k=1(#Ak +#bk).

In this paper we study the approximation property of smooth functions by deep neural networks with
RePUs as activation units. Note that RePU σs is a special case of piece-wise polynomial activation function,
which has been studied in [11, 41] for shallow network approximation. We also note that σ3 has been used
in a deep Ritz method proposed to solve the variational problems related to PDEs [42].
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2.1. Approximation by deep ReQU networks

Our analyses rely upon the fact: x, x2, . . ., xs, and xy all can be realized by σs neural networks with a
few number of coefficients. We first give the result for s = 2 case.

Lemma 1. For ∀x, y ∈ R the following identities hold:

x2 = βT
2 σ2(ω2x), (2.4)

x = βT
1 σ2(ω1x+ γ1), (2.5)

xy = βT
1 σ2(ω1x+ γ1y), (2.6)

where

β1 =
1

4
[1, 1,−1,−1]T , β2 = [1, 1]T , ω1 = [1,−1, 1,−1]T , ω2 = [1,−1]T , γ1 = [1,−1,−1, 1]T . (2.7)

If both x and y are non-negative, the formula for x2 and xy can be simplified to the following form

x2 = σ2(x), (2.8)

xy = βT
3 σ2(ω3x+ γ2y), (2.9)

where

β3 =
1

4
[1,−1,−1]T , ω3 = [1, 1,−1]T , γ2 = [1,−1, 1]T . (2.10)

Proof. All the identities can be obtained by straightforward calculations.

Note that the realizations given in Lemma 1 are not unique. For example, to realize idX(x) = x, we may
use

x = (x+ 1/2)2 − x2 − 1/4 = βT
2 σ2(ω2(x+ 1/2)− βT

2 σ2(ω2x) − 1/4,

for general x ∈ R, and use

x = (x+ 1/2)2 − x2 − 1/4 = σ2((x+ 1/2)− σ2(x) − 1/4,

for non-negative x. To have a neat presentation, we will use (2.4)-(2.10) throughout this paper even though
simpler realizations may exist for some special cases. We notice that realization of identity map idX(x)
given in 2.5 is a special case of (2.6) with y = 1. And the constant function 1 can be represented by a trivial
network with L = 1 and A1 = 0, b1 = 1 .

Remark 1. Notice that in [18, 19, 39], all the analyses base on the fact that x2 can be approximated to an
error tolerance ε by a ReLU deep networks of complexity O(log 1

ε ). In our approach, by replacing ReLU with
ReQU, x2 is represented with no error using a ReQU network with only one hidden layer and 2 activation
functions.

2.1.1. Optimal realizations of polynomials by deep ReQU networks with no error

The basic property of σ2 given in Lemma 1 can be used to construct deep neural network representations
of monomials and polynomials. We first show that the monomial xn, n > 2 can be represented exactly by
deep ReQU networks of finite size but not shallow ReQU networks.

Theorem 1. A) The monomial xn, n ∈ N defined on R can be represented exactly by a σ2 network. The
number of network layers, number of nodes and number of weights required to realize xn are at most ⌊log2 n⌋+
2, 5⌊log2 n⌋+5 and 25⌊log2 n⌋+14, respectively. Here ⌊x⌋ represents the largest integer not exceeding x for
x ∈ R.

B) For any n > 2, xn can not be represented exactly by any ReQU network with only one hidden layer.

4



Proof. We first prove part B. For a one-layer ReQU network with N activation units, one input and one
output, the function it presented can be written as

fN (x) =

N∑

k=1

ckσ2(akx+ bk) + d,

where d and ak, bk, ck, k = 1, . . . , N are the parameters of the network. Obviously, fN is a piecewise
polynomial, with at most N + 1 pieces in the intervals divided by distinct points of xk = −bk/ak, k =
1, . . . , N(suppose the points are in ascending order). In each piece, fN is a polynomials of degree 2, so it
can’t represent xn, n > 2 exactly. The error decreases at most cubicly with respect the length of the interval.
So, to approximate xn, n > 2 on a finite interval, e.g. I = [−1, 1] with N ReQU units, one can only obtain
an algebraic convergence with respect to N .

Now we prove part A. We first express n in binary system as follows:

n = am · 2m + am−1 · 2
m−1 + · · ·+ a1 · 2 + a0,

where aj ∈ {0, 1} for j = 0, 1, ...,m− 1, am = 1, and m = ⌊log2 n⌋. Then

xn = x2m · x

m−1∑

j=0

aj2
j

.

Introducing intermediate variables

ξ
(1)
k := x2k , ξ

(2)
k := x

k−1∑

j=0

aj2
j

, for 1 ≤ k ≤ m,

then
xn = ξ(1)m ξ(2)m . (2.11)

We use the iteration scheme
{

ξ
(1)
1 = x2,

ξ
(2)
1 = xa0 ,

and

{

ξ
(1)
k = (ξ

(1)
k−1)

2,

ξ
(2)
k = (ξ

(1)
k−1)

ak−1ξ
(2)
k−1,

for 2 ≤ k ≤ m, (2.12)

and (2.11) to realize xn. The outline of the realization is demonstrated in Figure 1. In each iteration step,

we need to realize two basic operations: (x)2 and (x)ajy, where x, y stands for ξ
(1)
k , ξ

(2)
k respectively. Note

that (x)2 can be realized by equation (2.4) and (2.8) in Lemma 1. For operation (x)ajy, since aj ∈ {0, 1},
by (2.6), we have

xajy =

(
1 + (−1)aj

2
+

1− (−1)aj

2
x

)

y = βT
1 σ2

(
ω1(c

+
j + c−j x) + γ1y

)
, (2.13)

where c±j := 1±(−1)aj

2 . So xajy can be realized by a linear combination of four σ2 units.
Now we show the procedure in details. Obviously, a linear function ax + b can be realized by a trivial

one-layer network with no activation units. A quadratic polynomial ax2 + bx+ c can be realized, using the
representation x(ax + b) + c = βT

1 σ2(ω1(ax + b) + γ1x) + c, by a ReLU network with one hidden layer, 4
activation units and 13 nonzero weights. For n ≥ 3, we follow the idea given in equation (2.12) and Figure
1. The function xn are realized in m+ 1 steps, which are discussed below.

1) In Step 1, we calculate

ξ
(1)
1 = x2 = βT

2 σ2(ω2x) ≥ 0, (2.14)

ξ
(2)
1 = xa0 = c+0 + c−0 x = c+0 + c−0 β

T
1 σ2 (ω1x+ γ1) , (2.15)

5



Input x

(1)

x21

xa0

(2)

x22

x2a1+a0

(m− 1)

x2m−1

x

m−2∑

j=0

2jaj

(m)

x2m

x

m−1∑

j=0

2jaj

x

m∑

j=0

2jaj

Figure 1: A schematic diagram for σ2 network realization of xn. (j) represents the j-th hidden layer for intermediate variables.

which implies the first layer output of the neural network is:

x1 = σ2(A1x+ b1), where A1 =

[

ω2

ω1

]

6×1

, b1 =

[

0

γ1

]

6×1

, (2.16)

and
[

ξ
(1)
1

ξ
(2)
1

]

= A20x1 + b20, where A20 =

[

βT
2 0

0 c−0 β
T
1

]

2×6

, b20 =

[

0

c+0

]

2×1

. (2.17)

Since #ω1 = 4, #ω2 = 2, #γ1 = 4, it is easy to see that the number of nodes in the first hidden layer
is 6, and the number of non-zeros is: #A1 +#b1 = 10.

2) In Step j, 2 ≤ j ≤ m, we calculate

ξ
(1)
j = (ξ

(1)
j−1)

2 = σ2(ξ
(1)
j−1) ≥ 0, (2.18)

ξ
(2)
j = (ξ

(1)
j−1)

aj−1ξ
(2)
j−1 = (c+j−1 + c−j−1ξ

(1)
j−1)ξ

(2)
j−1

= βT
1 σ2

(

ω1(c
+
j−1 + c−j−1ξ

(1)
j−1) + γ1ξ

(2)
j−1

)

, (2.19)

which suggest the j-th layer output of the neural network is:

xj = σ2

(

Aj1

[

ξ
(1)
j−1

ξ
(2)
j−1

]

+ bj1

)

, where Aj1 =

[

1 0

c−j−1ω1 γ1

]

5×2

, bj1 =

[

0

c+j−1ω1

]

5×1

,

and
[

ξ
(1)
j

ξ
(2)
j

]

= Aj+1,0xj + bj+1,0, where Aj+1,0 =

[

1 0

0 βT
1

]

2×5

, bj+1,0 = 0. (2.20)

We have

Aj = Aj1Aj0, bj = Aj1bj0 + bj1, j = 2, . . . ,m. (2.21)

By a direct calculation, we find that the number of nodes in Layer j is 5, and the number of non-zeros
in Layer j, j = 3, . . . ,m is #Aj +#bj = 21 + 4 = 25. For j = 2, #A2 +#b2 = 26 + 4 = 30.

3) In Step m+ 1, we calculate

xn = ξ(1)m ξ(2)m = βT
1 σ2

(

ω1ξ
(1)
m + γ1ξ

(2)
m

)

, (2.22)
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which implies

xm+1 = σ2

(

Am+1,1

[

ξ
(1)
m

ξ
(2)
m

])

, where Am+1,1 = [ω1 γ1]4×2. (2.23)

So we get
Am+1 = Am+1,1Am+1,0, bm+1 = 0, (2.24)

and
xm+2 := xn = βT

1 xm+1. (2.25)

By a direct calculation, we get the number of nodes in Layer m+ 1 is 4, and the number of non-zeros
is #Am+1 = 20.

For Layer m+ 2, which is the output layer of the overall network, Am+2 = βT
1 , and bm+2 = 0. There

is no activation units and number of non-zeros is #Am+2 = 4.

The ReQU network we just built has m+2 layers, number of nodes 6+ 5(m− 1) + 4 = 5m+5, number
of nonzero weights 10+ 30+ 25(m− 2)+ 20+ 4 = 25m+14. Combining the cases n = 1, 2, we reach to the
desired conclusion.

Now we consider how to convert univariate polynomials into σ2 networks. If we directly apply Theorem
1 to each monomial term in a polynomial and then combine them together, one would obtain a network of
depth O(log2 n) and size O(n log2 n), which is not optimal. We provide here two algorithms to convert a
polynomial into a ReQU network of same scale, i.e. without the extra log2 n factor. The first one is a direct
implementation of Horner’s method (also known as Qin Jiushao’s algorithm in China):

f(x) = a0 + a1x+ a2x
2 + a3x

3 + . . .+ anx
n

= a0 + x

(

a1 + x
(

a2 + x
(
a3 + . . .+ x(an−1 + xan)

))
)

. (2.26)

To describe the algorithm iteratively, we introduce the following intermediate variables

yk =

{

an−1 + xan, k = n,

ak−1 + xyk+1, k = n− 1, n− 2, . . . , 1.

Then we have y0 = f(x). But implementing of yk for each k, using realizations formula given in Lemma
1, and stack the implementations of n steps up, we obtain a σ2 neural network with O(n) layers and each
layer has a constant width independent of n.

The second construction given in the following theorem can achieve same representation power with same
amount of weights but less layers.

Theorem 2. If f(x) is a polynomial of degree n on R , then it can be represented exactly by a σ2 neural
network with ⌊log2 n⌋+ 1 hidden layers, and number of nodes and nonzero weights are both of order O(n).
To be more precise, the number of nodes is bounded by 9n, and number of nonzero weights is bounded by
61n.

Proof. Assume f(x) =
n∑

j=0

ajx
j , an 6= 0. We first use an example with n = 15 to demonstrate the process

7



of network construction as follows:

f(x) = a15x
15 + a14x

14 + · · ·+ a8x
8 + a7x

7 + a6x
6 + · · ·+ a1x+ a0

= x8
︸︷︷︸

ξ3,0

{

x4
︸︷︷︸

ξ2,0

[

x2
︸︷︷︸

ξ1,0

(a15x+ a14)
︸ ︷︷ ︸

ξ1,8

+(a13x+ a12)
︸ ︷︷ ︸

ξ1,7

]

︸ ︷︷ ︸

ξ2,4

+

[

x2 (a11x+ a10)
︸ ︷︷ ︸

ξ1,6

+(a9x+ a8)
︸ ︷︷ ︸

ξ1,5

]

︸ ︷︷ ︸

ξ2,3

}

︸ ︷︷ ︸

ξ3,2

+

{

x4

[

x2 (a7x+ a6)
︸ ︷︷ ︸

ξ1,4

+(a5x+ a4)
︸ ︷︷ ︸

ξ1,3

]

︸ ︷︷ ︸

ξ2,2

+

[

x2 (a3x+ a2)
︸ ︷︷ ︸

ξ1,2

+(a1x+ a0)
︸ ︷︷ ︸

ξ1,1

]

︸ ︷︷ ︸

ξ2,1

}

︸ ︷︷ ︸

ξ3,1

. (2.27)

Here ξ1,j1 , j1 = 0, 1, 2, · · · , 8, ξ2,j2 , j2 = 0, 1, 2, · · · , 4, and ξ3,j3 , j3 = 0, 1, 2 are the intermediate variable
output of Layer 1, 2, 3, respectively. And the final output is f(x) = ξ3,0ξ3,2 + ξ3,1.

We first describe the construction for the case n ≥ 4 here.
Denote m = ⌊log2 n⌋. We first extend f(x) to include monomials up to degree 2m+1−1 by zero padding:

f(x) :=

2m+1−1∑

j=0

ajx
j , where aj = 0, for n+ 1 ≤ j ≤ 2m+1 − 1. (2.28)

The process of building a σ2 network to represent f(x) is similar to the case n = 15. We give details below.

1) The output of Layer 1 intermediate variables are:

ξ1,j = a2j−1x+ a2j−2 = a2j−1β
T
1 σ2 (ω1x+ γ1) + a2j−2, j = 1, 2, ..., 2m, (2.29)

ξ1,0 = x2 = βT
2 σ2(ω2x), (2.30)

which suggest

x1 = σ2

(

ω1x+ γ1

ω2

)

= σ2(A1x+ b1), where A1 =

[

ω1

ω2

]

, b1 =

[

γ1

0

]

. (2.31)

and

ξ1 = A20x1 + b20, where A20 =

[

a21β
T
1 0

0 βT
2

]

, b20 =

[

a22

0

]

, (2.32)

with ξ1 = [ξ1,1, ξ1,2, . . . , ξ1,2m , ξ1,0]
T , a21 = [a1, a3, . . . , a2m+1−1]

T , a22 = [a0, a2, . . . , a2m+1−2]
T .

2) The output of Layer 2 intermediate variables are:

ξ2,j = ξ1,0ξ1,2j + ξ1,2j−1

= βT
1 σ2(ω1ξ1,2j + γ1ξ1,0) + βT

1 σ2 (ω1ξ1,2j−1 + γ1) , j = 1, 2, ..., 2m−1, (2.33)

ξ2,0 = (ξ1,0)
2 = σ2(ξ1,0), (2.34)

which imply

x2 = σ2(A21ξ1 + b21), x2, b21 ∈ R
(8×2m−1+1)×1, A21 ∈ R

(8×2m−1+1)×(2m+1), (2.35)
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and most elements in A21, b21 are zeros. The nonzero elements are given below using a Matlab subscript
style as:

A21(8(j−1) + 1 : 8j, [2j−1 : 2j, 2m + 1]) =

[

ω1 0 0

0 ω1 γ1

]

, b21(8(j−1) : 8j) =

[

γ1

0

]

, (2.36)

for j = 1, 2, . . . , 2m−1, and the last element of A21 is 1. According to the result (2.32) of Layer 1, we
get

x2 = σ2 (A2x1 + b2) , A2 = A21A20, b2 = A21b20 + b21. (2.37)

We also have

ξ2 = A30x2, where A30 =

[

I2m−1 ⊗ [βT
1 βT

1 ] 0

0 1

]

, (2.38)

Here ξ2 = [ξ2,1, ξ2,2, . . . , ξ2,2m−1 , ξ2,0]
T , and I2m−1 is the identity matrix of in R

2m−1

. ⊗ stands for
Kronecker product.

3) The output of Layer k (3 ≤ k ≤ m) intermediate variables are:

ξk,j = ξk−1,0ξk−1,2j + ξk−1,2j−1

= βT
1 σ2(ω1ξk−1,2j + γ1ξk−1,0) + βT

1 σ2 (ω1ξk−1,2j−1 + γ1) , j = 1, 2, ..., 2m−k+1, (2.39)

ξk,0 = (ξk−1,0)
2 = σ2(ξk−1,0). (2.40)

Denote ξk = [ξk,1, ξk,2, . . . , ξk,2m−k+1 , ξk,0]
T . We have

ξk = Ak+1,0xk, xk = σ2(Ak1ξk−1 + bk1), (2.41)

where Ak1, bk1 has the same formula as A21, b21 given in (2.36) except that the maximum value of j
is 2m−k+1 rather than 2m−1, and Ak+1,0 has the same formula as A30 given in (2.38) with 12m−1×1

replaced by 12m−k+1×1. Combining (2.41) and (2.38), we get

xk = σ2(Akxk−1 + bk), where Ak = Ak1Ak0, bk = bk1. (2.42)

4) The output of Layer m+ 1 intermediate variables are:

ξm+1,1 = ξm,0ξm,2 + ξm,1 = βT
1 σ2(ω1ξm,2 + γ1ξm,0) + βT

1 σ2 (ω1ξm,1 + γ1) . (2.43)

Written into the following form

ξm+1 := [ξm+1,1] = Am+2,0xm+1, xm+1 = σ2(Am+1,1ξm + bm+1,1), (2.44)

we have

Am+1,1 =

[

ω1 0 0

0 ω1 γ1

]

, bm+1,1 =

[

γ1

0

]

, (2.45)

and
Am+2,0 = [βT

1 βT
1 ], bm+2,0 = 0. (2.46)

The iteration formula for xm+1 is

xm+1 = σ2(Am+1xm + bm+1), where Am+1 = Am+1,1Am+1,0, bm+1 = bm+1,1. (2.47)
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5) Since ξm+1 = f(x), the network ends at Layer m+2, with xm+2 = ξm+1. So we get Am+2 = Am+2,0,
and bm+2 = 0 from equation (2.44).

For n < 4, the procedure can be obtained by removing some sub-steps from the cases n ≥ 4. From the
construction process, we see that the number of layers is m+2, the numbers of nodes from Layer 1 to Layer
m + 1 are 6, 8 × 2m−k+1 + 1(2 ≤ k ≤ m) and 8 respectively, and the number of nonzero weights in Aj ,
bj(1 ≤ j ≤ m+2) are not bigger than 10, (40×2m−1+2)+8×2m−1, (68×2m−k+1+1)+4×2m−k+1(3 ≤ k ≤ m),
72, 8 respectively. Summing up those number, we reach to the desired conclusion.

Remark 2. Theorem 1 says we can use a σ2 network of scale O(log2 n) to represent xn exactly. Theorem
2 says that any polynomial of degree less than n can be represented exactly by a σ2 neural network with
⌊log2 n⌋ + 1 hidden layers, and no more than O(n) nonzero weights. Such results are not available for
ReLU network and neural networks using other non-polynomial activation functions, such as logistic, tanh,
softplus, sinc etc. We note that the constants in the two theorems may not be optimal, but the orders of
number of layers and number of nonzero weights are sharp.

2.1.2. Error bounds of approximating smooth functions by deep ReQU networks

Now we analyze the error of approximating general smooth functions using ReQU networks. We first
introduce some notations and give a brief review to some classical results of polynomial approximation.

Let Ω ⊆ R
d be the domain on which the function to be approximated is defined. For the 1-dimensional

case in this section, we focus on Ω = I := [−1, 1]. Similar discussions and results can be extended to
Ω = [0,∞] and [−∞,∞] as well. We denote the set of polynomials with degree up to N defined on Ω by
PN (Ω), or simply PN . Let Jα,β

n (x) be the Jacobi polynomial of degree n, n ∈ N0, which form a complete
set of orthogonal bases in the weighted L2

ωα,β(I) space with respect to weight ωα,β = (1 − x)α(1 + x)β

for α, β > −1. To describe functions with high order regularity, we define Jacobi-weighted Sobolev space
Bm

α,β(I) as [43]:

Bm
α,β(I) :=

{
u : ∂k

xu ∈ L2
ωα+k,β+k(I), 0 ≤ k ≤ m

}
, m ∈ N, (2.48)

with norm

‖f‖Bm
α,β

:=

(
m∑

k=0

∥
∥∂k

xu
∥
∥
p

L2

ωα+k,β+k

)1/2

. (2.49)

Define the L2
ωα,β -orthogonal projection πα,β

N : L2
ωα,β(I) → PN as

(

πα,β
N u− u, v

)

ωα,β
= 0, ∀ v ∈ PN . (2.50)

A detailed error estimate on the projection error πα,β
N u − u is given in Theorem 3.35 of [43], by which we

have the following theorem on the approximation error of ReQU networks.

Theorem 3. Let α, β > −1. For any u ∈ Bm
α,β(I), there exist a ReQU network Φu

N with ⌊log2 N⌋+1 hidden
layers, O(N) nodes, and O(N) nonzero weights , satisfying the following estimate

• if 0 ≤ l ≤ m ≤ N + 1, we have

∥
∥∂l

x (Rσ2(Φ
u
N )− u)

∥
∥
ωα+l,β+l ≤ c

√

(N −m+ 1)!

(N − l + 1)!
(N +m)(l−m)/2‖∂m

x u‖ωα+m,β+m , (2.51)

• if m > N + 1, we have

∥
∥∂l

x (Rσ2(Φ
u
N )− u)

∥
∥
ωα+l,β+l ≤ c(2πN)−1/4

(√

e/2

N

)N−l+1

‖∂N+1
x u‖ωα+N+1,β+N+1, (2.52)
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where c ≈ 1 for N ≫ 1.

Proof. For any given u ∈ Bm
α,β(I), there exists a polynomial f = πα,β

N u ∈ PN . The projection error πα,β
N u−u

is estimated by Theorem 3.35 in [43], which is exactly (2.51) and (2.52) with Rσ2(Φ
u
N ) replaced by πα,β

N u.
By Theorem 2, f can be represented exactly by a ReQU network Φu

N with ⌊log2 N⌋+1 hidden layers, O(N)

nodes, and O(N) nonzero weights, i.e. Rσ2(Φ
u
N ) = πα,β

N u. We thus obtain estimation (2.51) and (2.52).

Remark 3. In (2.51) and (2.52), we allow the error measured in high-order derivatives(l ≥ 3), because
Rσ2(Φ

u
N ) is an exact realization of a polynomial, which is infinitely differentiable. In practice, if Φu

N is a
trained network with numerical error, we can not measure the error with derivatives order ≥ 3, since ∂3

xσ2(x)
is not in L2 space.

Based on Theorem 3, we can analyze the network complexity of ε-approximation of a given function with
certain smoothness. For simplicity, we only consider the case with l = 0. The result is given in the following
theorem.

Theorem 4. For any given function f(x) ∈ Bm
α,β(I) with norm less than 1, where m is either a fixed positive

integer or infinity, there exists a ReQU network Φf
ε with number of layers L, number of nonzero weights N

satisfying

• if m is a fixed positive integer, then L = O
(

1
m log2

1
ε

)
, and N = O

(
ε−

1
m

)
;

• if m = ∞, i.e. f is analytic, then L = O
(
log2

(
log 1

ε

))
, and N = O

(
1
γ log

(
1
ε

) )
, γ ≈ O

(
log(log 1

ε )
)
,

can approximate f within an error tolerance ε, i.e.

‖Rσ2(Φ
f
ε )− f‖ωα,β(I) ≤ ε. (2.53)

Proof. For a fixed m, or N ≫ m, we obtain from (2.51) that

‖Rσ2(Φ
u
N )− u‖ωα,β(I) ≤ cN−m‖∂m

x u‖ωα+m,β+m. (2.54)

By above estimate, we obtain that to achieve an error tolerance ε to approximate a function with Bm
α,β(I)

norm less than 1, one need to take N =
(
c
ε

) 1
m . For fixed m, we have N = O

(
ε−

1
m

)
, the depth of the

corresponding ReQU network is L = O
(

1
m log2

1
ε

)
.

For analytic function, by taking m = ∞ in equation (2.52), we have

‖Rσ2(Φ
u
N )− u‖ωα,β(I) ≤ c(2πN)−

1
4

(√

e/2

N

)N+1

‖u‖B∞

α,β
≤ c′e−γN‖u‖B∞

α,β
, (2.55)

where c′ is a general constant, and γ ≈ O(logN) can be larger than any fixed positive number for sufficient
large N . For simplicity, we can keep it as a constant. To approximate a function with B∞

α,β(I) norm less

than 1 with error ε = c′e−γN , one needs to take N = 1
γ log

(
c′

ε

)

, which means N = O
(
1
γ log

(
1
ε

) )
. The

depth of the corresponding ReQU network is L = O
(
log2

(
log 1

ε

))
.

2.2. Approximation by deep networks using general rectified power units

The results of approximation monomials, polynomials and general smooth functions by ReQU networks
discussed in subsection 2.1 can be extend to general RePU networks.

To keep the paper short, we only present the results on approximating monomials with RePU in Theorem
5. The other results can be obtained similarly as did in last subsection for ReQU networks.

Theorem 5. Regarding the problem of using σs(x) (2 ≤ s ∈ N) neural networks to exactly represent
monomial xn, n ∈ N, we have the following results:
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(1) If s = n, the monomial xn can be realized exactly using a σs networks having only 1 hidden layer with
two nodes.

(2) If 1 ≤ n < s, the monomial xn can be realized exactly using a σs networks having only 1 hidden layer
with no more than 2s nodes.

(3) If n > s ≥ 2, the monomial xn can be realized exactly using a σs networks having ⌊logs n⌋+ 2 hidden
layers with no more than (6s+ 2)(⌊logs n⌋+ 2) nodes, no more than O(25s2⌊logs n⌋) nozero weights.

Proof. (1) It is easy to check that xs has an exact σs realization given by

ρs(x) := σs(x) + (−1)sσs(−x) = xs(x). (2.56)

(2) For the case of 1 ≤ n < s, we consider the following linear combination

a0 +

s∑

k=1

akρs(x + bk) = a0 +

s∑

k=1

ak





s∑

j=0

Cs
j b

s−j
k xj



 = a0 +

s∑

j=0

Cs
j

(
s∑

k=1

akb
s−j
k

)

xj , (2.57)

where a0, ak, bk, k = 1, . . . , s are parameters to be determined. Cs
j are binomial coefficients. Identity the

above expression with xn, we obtain the following linear system

Ds+1a :=















1 1 · · · 1 0
...

...
...

...

bs−n
1 bs−n

2 · · · bs−n
s 0

...
...

...

bs−1
1 bs−1

2 · · · bs−1
s 0

bs1 bs2 · · · bss 1

























a1
...

·

as

a0











=












0
...

(Cs
n)

−1

...

0












, (2.58)

where the top-left s× s submatrix of Ds+1 is a Vandermonde matrix, which is invertible as long as bk, k =
1, . . . , s are distinct. For simplicity, we choose bk, k = 0, . . . , s to be equidistant points, then (2.58) is uniquely
solvable. Solving for a0, . . . , as we obtain an exact representation of xn using (2.57), which corresponds to
a neural network having one hidden layer with no more than 2s σs units.

For example, for s = 2, we may take b1 = −1, b1 = 1, solving equation (2.58) with n = 1, we get
a1 = − 1

4 , a2 = 1
4 , and a0 = 0, thus

x =
1

4
ρ2(x+ 1)−

1

4
ρ2(x− 1).

For s = 3, if take b1 = −1, b2 = 0, b3 = 1, we obtain

x =
1

6

[
ρ3(x − 1)− 2ρ3(x) + ρ3(x+ 1)

]

x2 =
1

6

[
ρ3(x + 1)− ρ3(x− 1)

]
−

1

3

(3) Now, we consider the case n > s ≥ 2, n ∈ N. For any given quantity y, z, using the identity

yz =
1

4

[
(y + z)2 − (y − z)2

]
(2.59)

and the fact that (y + z)2, (y − z)2 both can be realized exactly by a one layer σs network with no more
than 2s nodes, we conclude that the product yz can be realized by one layer σs network with no more than
4s nodes. To realize xn by σs, we rewrite n in the following form

n = am · sm + am−1 · s
m−1 + · · ·+ a1 · s+ a0, (2.60)

12



Input: x

(1)

xs1

xa0

(2)

xs2

(xs)a1

xa0

(3)

xs3

(xs2 )a2

xsa1+a0

(m− 1)

xsm−1

(xsm−2

)am−2

x

m−3∑

j=0

sjaj

(m)

xsm

(xsm−1

)am−1

x

m−2∑

j=0

sjaj

(m+ 1)

xsm

x

m−1∑

j=0

sjaj

x

m∑

j=0

sjaj

Figure 2: A schematic diagram for σs network realization of xn, n > s. (j) represents the j-th hidden layer of intermediate
variables.

where aj ∈ {0, 1, . . . , s− 1} for j = 0, 1, ...,m− 1 and am = 1. So we have

xn = (xsm )am(xsm−1

)am−1 · · · (xs)a1(x)a0 (2.61)

Define ξk = xsk , zk+1 = (ξk)
ak , k = 0, 1, . . . ,m, and

y2 = xa0 , yk+2 = zk+1yk+1

(
= (xsk )akyk+1

)
, for k = 1, . . . ,m, (2.62)

we have ym+2 = xn. The equation (2.62) can be regarded as an iteration scheme, with iteration variables
ξk, yk, zk, where subscript k stands for iteration step. A schematic diagram for this iteration is given in
Figure 2. Different to Theorem 1, for s > 2, we need a deep σs neural network with m+ 2 hidden layers to
realize xn, n > s, due to the introduction of intermediate variables zk. In each layer, we need no more than
2+2s+4s activation nodes to calculate ξk+1 = ρs(ξk), zk+1 = (ξk)

ak , and yk+1 = zkyk. So in total we need
no more than (6s+ 2)(m+ 2) = O(6s logs n) nodes. A direct calculation shows that the number of nonzero
weights in the network is no more than O(25s2 logs n). The theorem is proved.

3. Approximation of multivariate smooth functions

In this section, we discuss how to approximate multivariate smooth functions by ReQU networks. Similar
to the univariate case, we first study the representation of polynomials then discuss the approximation error
of general smooth functions.

3.1. Deep ReQU network representations of multivariate polynomials

Theorem 6. If f(x) is a multivariate polynomial with total degree n on R
d, then there exists a σ2 neural

network having d⌊log2 n⌋ + d hidden layers with no more than O(Cn+d
d ) activation functions and nonzero

weights, can represent f with no error.

Proof. 1) We first consider the 2-dimensional case. Suppose f(x, y) =
n∑

i+j=0

aijx
iyj, and n ≥ 4 (the results

for n ≤ 3 are similar but easier, so skipped here). To represent f(x, y) exactly with a σ2 neural network
based the results on 1-dimensional case given in Theorem 2, we first rewrite f(x, y) as

f(x, y) =
n∑

i=0

( n−i∑

j=0

aijy
j

)

xi =:
n∑

i=0

ayi x
i, where ayi =

n−i∑

j=0

aijy
j . (3.1)
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So to realize f(x, y), we can first realize ayi , i = 0, . . . , n− 1 using n small σ2 networks Φi, i = 0, . . . , n− 1,
i.e. Rσ2 (Φi)(y) = ayi for given input y; then use a σ2 network Φn to realize the 1-dimensional polynomials
f(x, y) =

∑n
i=0 a

y
i x

i. There are two places need some technique treatments, the details are given below.

(1) The network Φn takes ayi , i = 0, . . . , n and x as input. So these quantities must be presented at the
same layer of the overall neural network, because we do not want connections over disjointed layers.
By Theorem 2, the largest depth of networks Φi, i = 0, . . . , n − 1 is ⌊logs n⌋ + 2, so we can lift x
to layer ⌊logs n⌋ + 2 using multiple idX(·) operations. Similarly, we also keep a record of input y in
each layer using multiple idX(·) operations, such that Φi, i = 1, . . . , n− 1 can start from appropriate
layer and generate output exactly at layer ⌊logs n⌋ + 2. The overall cost for recording x, y in layers
1, . . . , ⌊logs n⌋+ 2 is O(⌊logs n⌋+ 2), which is small comparing to the number of coefficients Cn+d

d .

(2) While realizing
∑n

i=0 a
y
i x

i, the coefficients ayi , i = 0, . . . n are network input instead of fixed parameters.
So when applying the network construction given in Theorem 2, we need to modify the structure of
the first layer of the network. More precisely, equation (2.29) in Theorem 2 should be changed to

ξy1,j = ay2j−1x+ ay2j−2 = βT
1 σ2 (ω1x+ γ1a2j−1) + βT

1 σ2 (ω1a2j−2 + γ1) , j = 1, 2, ..., 2m. (3.2)

So the number of nodes for the first layer changed from 6 to 4+8×2m, the number of nonzero weights
for the first layer changed from 10 to 16× 2m + 4. So the number of hidden layers, number of nodes
and nonzero weights of Φn can be bounded by ⌊logs n⌋+ 1, 17n, and 77n.

Assembling Φ0, . . . ,Φn, the overall network to represent f(x, y) has 2⌊logs n⌋ + 3 layers with number of
nodes no more than

n−1∑

j=0

9(n− j) + 17n+ 8(m+ 2) = 9
n(n+ 1)

2
+ 17n+ 8m+ 16 = O(Cn+d

d ),

and number of weights no more than

n−1∑

j=0

61(n− j) + 77n+ 16(m+ 2)× 2 + 12n = 61
n(n+ 1)

2
+ 89n+ 32m+ 64 = O(Cn+d

d ).

Thus, we proved that the theorem is true for the case d = 2.
2) The case d > 2 can be proved by mathematical induction using the similar procedure as done for

d = 2 case.

Using a similar approach as in Theorem 6, one can easily prove the following theorem.

Theorem 7. For a polynomials fN in a tensor product space Qd
N (I1 × · · · × Id) := PN (I1)⊗ · · · ⊗ PN (Id),

there exists a σ2 network having d⌊log2 N⌋+ d hidden layers with no more than O(Nd) activation functions
and nonzero weights, can represent fN with no error.

3.2. Error bounds of approximating multivariate smooth functions by deep ReQU networks

Now we analyze the error of approximating general multivariate smooth functions using ReQU networks.
For a vector x = (x1, . . . , xd) ∈ R

d, we define |x|1 := |x1|+ . . .+ |xd|, |x|∞ := maxdi=1 |xi|. Define high
dimensional Jacobi weight ωα,β := ωα1,β1 · · ·ωαd,βd . We define multidimensional Jacobi-weighted Sobolev
space Bm

α,β(I
d) as [43]:

Bm
α,β(I

d) :=
{
u(x) | ∂k

xu := ∂k1
x1

· · · ∂kd
xd
u ∈ L2

ωα+k,β+k(I
d), k ∈ N

d
0, |k|1 ≤ m

}
, m ∈ N0, (3.3)

with norm and semi-norm

‖u‖Bm
α,β

:=

(
∑

0≤ |k|1≤m

∥
∥∂k

xu
∥
∥
2

L2

ωα+k,β+k

)1/2

, |u|Bm
α,β

:=

(
∑

|k|1=m

∥
∥∂k

xu
∥
∥
2

L2

ωα+k,β+k

)1/2

. (3.4)
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Define the L2
ωα,β -orthogonal projection πα,β

N : L2
ωα,β(I

d) → Qd
N (Id) as

(

πα,β
N u− u, v

)

ωα,β
= 0, ∀ v ∈ P d

N (Id). (3.5)

Then for u ∈ Bm
α,β(I

d), we have the following error estimate [43]:

‖πα,β
N u− u‖L2

ωα,β
(Id) ≤ cN−m|u|Bm

α,β
, 1 ≤ m ≤ N, (3.6)

where c is a general constant. Combining (3.6) and Theorem 7, we reach to the following upper bound for
the ε-approximation of functions in Bm

α,β(I
d) space.

Theorem 8. For any u ∈ Bm
α,β(I

d), with |u|Bm
α,β

(Id) ≤ 1, there exists a σ2 neural network Φu
ε having

O
(

d
m log2

1
ε + d

)
layers with no more than O

(
ε−d/m

)
nodes and nonzero weights, approximate u with

L2
ωα,β(I

d)-error less than ε, i.e.
‖Rσ2(Φ

u
ε )− u‖L2

ωα,β
(Id) ≤ ε. (3.7)

Results similar to Theorem 8 can be obtained for the approximation on R
d and (R+)d using the Hermite

and Laguerre polynomial projection.

Remark 4. Comparing Theorem 8 with Theorem 1 in [18], we see that the number of computational units
and nonzero weights needed by a ReQU network to approximate a function u ∈ Bm

α,β(I
d) with an error

tolerance ε is less than that needed by a ReLU network. The ReLU network is log 1
ε times larger than

corresponding ReQU network. For low accuracy approximation, the factor O(log 1
ε ) is not very big, but for

high accuracy approximations, this factor can as large as several dozens, which is expected to make significant
difference in large scale computations.

4. High-dimensional smooth functions with sparse polynomial approximations

In last section, we showed that for a d-dimensional functions with partial derivatives up to order m in
L2(Id) can be approximated within error ε by a ReQU neural network with complexity O(ε−d/m). When
m is fixed or much smaller than d, the network complexity has an exponential dependence on d. However,
in a lot of applications, high-dimensional problem may have low intrinsic dimension (see e.g. [44][45]). One
particular example is high-dimensional tensor product functions(or linear combinations of finite terms of
tensor product functions), which can be well approximated by a hyperbolic cross or sparse grid truncated
series.

4.1. A brief review on hyperbolic cross approximations and sparse grids

Sparse grids were originally introduced by S. A. Smolyak[21] to integrate or interpolate high dimensional
functions. Hyperbolic cross approximation is a technique similar to sparse grids but without the concept
of grids. We introduce hyperbolic cross approximation by considering a tensor product function: f(x) =
f1(x1)f1(x2) · · · fd(xd). Suppose that f1, . . . , fd have similar regularity that can be well approximated by
using a set of orthonormal bases {φk, k = 1, 2, . . . .} as

fi(x) =

∞∑

k=0

b
(i)
k φk(x), |b

(i)
k | ≤ ck̄−r, i = 1, . . . , d, (4.1)

where c is a general constant, r ≥ 1 is a constant depending on the regularity of fi, k̄ := max{1, k}. So we
have an expansion for f as

f(x) =

d∏

i=1

( ∞∑

k=0

b
(i)
k φk(xi)

)

=
∑

k∈Nd
0

bkφk(x), where |bk| =
∣
∣b

(1)
k1

· · · b
(d)
kd

∣
∣ ≤ cd(k̄1 · · · k̄d)

−r. (4.2)
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Thus, to have a best approximation of f(x) using finite terms, one should take

fN :=
∑

k∈χd
N

bkφk(x), (4.3)

where
χd
N :=

{
k = (k1, . . . , kd) ∈ N

d
0 | k̄1 · · · k̄d ≤ N

}
(4.4)

is the hyperbolic cross index set. We call fN defined by (4.3) a hyperbolic cross approximation of f .
For general functions defined on Id, we choose φk to be multivariate Jacobi polynomials Jα,β

n , and define
the hyperbolic cross polynomial space as

Xd
N := span{ Jα,β

n , n ∈ χd
N }. (4.5)

Note that the definition of Xd
N doesn’t depends on α and β. {Jα,β

n } is used to served as a set of bases for
Xd

N . To study the error of hyperbolic cross approximation, we define Jacobi-weighted Korobov-type space

Km
α,β(I

d) :=
{
u(x) : ∂k

xu ∈ L2
ωα+k,β+k(I

d), 0 ≤ |k|∞ ≤ m
}
, for m ∈ N0, (4.6)

with norm and semi-norm

‖u‖Km
α,β

:=

(
∑

0≤ |k|∞≤m

∥
∥∂k

xu
∥
∥
2

L2

ωα+k,β+k

)1/2

, |u|Km
α,β

:=

(
∑

|k|∞=m

∥
∥∂k

xu
∥
∥
2

L2

ωα+k,β+k

)1/2

. (4.7)

For any given u ∈ K0
α,β(= B0

α,β), the hyperbolic cross approximation can be defined as a projection as

(πα,β
N,Hu− u, v)ωα,β = 0, ∀ v ∈ Xd

N . (4.8)

Then we have the following error estimate about the hyperbolic cross approximation [24]:

‖∂l
x(π

α,β
N,Hu− u)‖ωα+l,β+l ≤ D1N

|l|∞−m|u|Km
α,β

, 0 ≤ l ≤ m, m ≥ 1, (4.9)

where D1 is a constant independent of N . It is known that the cardinality of χd
N is of order O(N(logN)d−1).

The above error estimate says that to approximate a function u ∈ Km
α,β with an error tolerance ε, one need

no more than O
(
ε−1/m( 1

m log 1
ε )

d−1
)
Jacobi polynomials, the exponential dependence on d is weakened (cp.

Theorem 8). To remove the exponential term (log 1
ε )

d−1, one may consider a more general sparse polynomial
space[24]:

Xd
N,γ := span

{
Jα,β
n , (Πd

i=1n̄i)|n|
−γ
∞ ≤ N1−γ

}
, −∞ ≤ γ < 1. (4.10)

In particular, Xd
N,0 = Xd

N is the hyperbolic cross space defined in (4.5), and Xd
N,−∞ := span

{
Jα,β
n , |n|∞ ≤

N
}
is the standard full grid. For 0 < γ < 1, it is known that [23]:

Card(Xd
N,γ) = C(γ, d)N, 0 < γ < 1, (4.11)

where C(γ, d) is a constant that depends on γ and d but is independent of N . We call Xd
N,γ , 0 < γ < 1

optimized hyperbolic cross polynomial space. It is proved by Shen and Wang [24] that the L2
ωα,β -orthogonal

projection πα,β
N,γ from Korobov space to Xd

N,γ satisfies the following estimate (see Theorem 2.3 in [24]):

‖πα,β
N,γu− u‖ωα,β ≤ D2N

−m(1−γ(1− 1
d
))|u|Km

α,β
, 0 < γ < 1, (4.12)

where D2 is a constant independent of N . From (4.11) and (4.12), we get that to approximate a function

u ∈ Km
α,β with an error tolerance ε, one need no more than O

(

ε−1/m(1−γ(1− 1
d
))
)

Jacobi polynomials. We

will later use this estimate to give a better upper bound of approximating functions in Km
α,β using deep

ReQU networks.
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In practice, the exact hyperbolic cross projection is not easy to calculate. An alternate approach is the
sparse grids, which use hierarchical interpolation schemes to build an hyperbolic cross like approximation
of high dimensional functions. To define sparse grids for Id, we first define the underlying 1-dimensional
interpolations. Given a series of interpolation point set X i = {xi

1, · · · , x
i
mi

} ⊆ [−1, 1], mi = Card(X i),
i = 1, 2, . . ., with 0 < m1 < m2 < · · · , the interpolation on X i for f ∈ C0(I) is defined as

U i(f) =

mi∑

j=1

f(xi
j)ℓ

i
j(x), (4.13)

where ℓij(x) ∈ Pmi−1([−1, 1]) are the Lagrange interpolation bases. The sparse grid interpolation for high-

dimension function f ∈ C0(Id) is defined as [21]:

A(q, d)(f) =
∑

d=|i|1≤q

(

∆i1 ⊗ · · · ⊗∆id
)

(f), q ≥ d, (4.14)

where ∆i = U i − U i−1, i ∈ N
d. For convenience, we define U0 := 0, m0 = 0, X 0 = ∅. Formally, (4.14)

can be defined on any grids {X i, i = 1, 2, . . . , q− d+1 }. However, to have a one-to-one transform between
the values on interpolation points and the coefficients of linear independent bases in the interpolation space,
we need {X i, i = 1, 2, . . . , q − d + 1 } to be nested, i.e. X 1 ⊂ X 2 ⊂ · · ·X q−d+1. Fast transforms between
physical values and interpolation coefficients always exist for sparse grid interpolations using nested grids
[29]. Define sparse grid index set as

Iq
d :=

⋃

d≤|i|1≤q

Ĩi1 × · · · × Ĩid , where Ĩk := Ik \ Ik−1, Ik = { 1, 2, . . . ,mi }. (4.15)

Then the set of the sparse grid interpolation points and the corresponding interpolation space are given as

X q
d =

⋃

d=|i|1≤q

(

(X i1 \ X i1−1)⊗ · · · ⊗ (X i1 \ X i1−1)
)

, q ≥ d, (4.16)

V q
d = span{ φ̃k(x), k ∈ Iq

d } q ≥ d, (4.17)

where φ̃k can be chosen as the hierarchical interpolation bases defined in [29], or the Lagrange-type d-
dimensional interpolation polynomial on points X d

d , which takes value 1 on k-th interpolation point and 0
on other points.

A commonly used 1-dimensional scheme is the Chebyshev-Gauss-Lobatto scheme, which uses the extrema
of the Chebyshev polynomials as interpolation points:

xi
j = − cos

(
(j − 1)π

mi − 1

)

, j = 1, 2, · · · ,mi. (4.18)

In order to obtain nested sets of points, mi are chosen as

mi =

{

1, i = 1,

2i−1 + 1, i > 1,
(4.19)

with x1
1 := 0. Define

F k
d := { f : [−1, 1]d → R | Dαf ∈ C([−1, 1]d), ∀ |α|∞ ≤ k }. (4.20)

Then for any function f ∈ F k
d , with ‖f‖Fk

d
≤ 1, the interpolation error on the above Chebyshev sparse grids

are bounded as [26]:

‖f −A(q, d)f‖L∞ ≤ cd,k2
−kqq2d−1 ≤ cd,kn

−k(log n)(k+2)(d−1)+1, (4.21)

where n = Card(X q
d ) = Card(Iq

d) = O(2qqd−1) is the number of points in the sparse grids, and cd,k is a
constant depends on d, k only. Note that if other norm instead of the L∞ norm is used, one can improve
the result a little bit, but no results with error bound smaller than O(n−k) is known.
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4.2. Error bounds of deep ReQU network approximation for multivariate functions with sparse structures

Now we discuss the ReQU network approximation of high-dimensional smooth functions with sparse
polynomial expansions, which takes hyperbolic cross and sparse grid polynomial expansions as examples.
We introduce a concept of complete polynomial space first. A linear polynomial space PC is said to be
complete if it satisfies the following: if p(x) ∈ PC , then ∂k

xp(x) ∈ PC for any k ∈ N
d
0, where p(x) is a

d-dimensional a polynomial. It is easy to verify that the hyperbolic cross polynomial space Xd
N , the sparse

grid polynomial interpolation space V q
d , and the optimized hyperbolic cross space Xd

N,γ are all complete.
For a complete polynomial space, we have the following ReQU network representation results.

Theorem 9. Let PC be a complete linear space of d-dimensional polynomials with dimension n, then for any
function f ∈ PC , there exists a σ2 neural network having no more than

∑d
i=1⌊log2 Ni⌋+ d hidden layers, no

more than O(n) activation functions and nonzero weights, can represent f exactly. Here Ni is the maximum
polynomial degree in ith direction in PC .

Proof. The proof is similar to Theorem 6. First, f can be written as linear combinations of monomials.

f(x) =
∑

k∈χC

akx
k, (4.22)

where χC is the index set of PC with cardinality n. Then we rearrange the summation as

f(x) =

Nd∑

kd=0

a
x1x2···xkd−1

kd
xkd

d , a
x1x2···xkd−1

kd
:=

∑

(k1,k2,...,kd−1)∈χ
kd
C

ak1k2···kd−1
xk1
1 xk2

2 · · ·x
kd−1

d−1 , (4.23)

where χkd

C are d − 1 dimensional complete index sets that depend on the index kd. If each a
x1x2···xkd−1

kd
,

kd = 0, 1, . . . , Nd can be exactly represented by a σ2 network with no more than
∑d−1

i=1 ⌊log2 Ni⌋ + (d − 1)

hidden layers, no more O(Card(χkd

C )) nodes and nonzero weights, then f(x) can be exactly represented by

a σ2 neural network with no more
∑d

i=1⌊log2 Ni⌋+ d hidden layers, no more than O(n) nodes and nonzero

weights, since the operation
∑Nd

kd=0 a
x1x2···xkd−1

kd
xkd

d can be realized exactly by a σ2 network with ⌊log2 Nd⌋+1
hidden layers and no more than O(Nd) nodes and nonzeros operations. So, by mathematical induction, we
only need to prove that when d = 1 the theorem is satisfied, which is true by Theorem 2.

Remark 5. According to Theorem 9, we have that:

1) For any f ∈ Xd
N , there exists a ReQU network having no more than d⌊log2 N⌋+ d hidden layers, no

more than O(N(logN)d−1) activation functions and nonzero weights, can represent f with no error.

2) For any f ∈ Xd
N,γ with 0 < γ < 1, there exists a ReQU network having no more than d⌊log2 N⌋ + d

hidden layers, no more than O(N) activation functions and nonzero weights, can represent f with no
error.

3) For any f ∈ V q
d , there exists a ReQU network having no more than d(q − d + 2) hidden layers, no

more than O(2qqd−1) activation functions and nonzero weights, can represent f with no error.

Combine the results in Remarks 5 with (4.9),(4.12) and (4.21), we obtain the following theorem.

Theorem 10. We have following results for ReQU network approximation of functions in Km
α,β(I

d), m ≥ 1

and F k
d (I

d), k ≥ 1:

1) For any function u ∈ Km
α,β(I

d), m ≥ 1 with |u|Km
α,β

≤ 1/D1, any ε ≥ 0, there exists a ReQU network

Φu
ε with no more than d

m log2
1
ε + d hidden layers, no more than O

(
ε−1/m( 1

m log 1
ε )

d−1
)
nodes and

nonzero weights, such that
‖Rσ2(Φ

u
ε )− u‖ωα,β ≤ ε. (4.24)
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2) For any function u ∈ Km
α,β(I

d), m ≥ 1 with |u|Km
α,β

≤ 1/D2, any ε ≥ 0, there exists a ReQU network

Φu
ε with no more than d

m(1−γ(1− 1
d
))
log2

1
ε + d hidden layers, no more than O

(
ε−1/m(1−γ(1− 1

d
))
)
nodes

and nonzero weights, such that
‖Rσ2(Φ

u
ε )− u‖ωα,β ≤ ε. (4.25)

3) For any function f ∈ F k
d (I

d), k ≥ 1 with ‖f‖Fk
d
≤ 1, any ε ≥ 0, there exists a ReQU network Ψf

ε with

no more than O
(
d1+δ

k log2
1
ε + d

)
hidden layers, no more than O

(
ε−(1+δ)/k(1+δ

k log2
1
ε )

d−1
)
nodes and

nonzero weights, such that
‖Rσ2(Ψ

f
ε )− f‖L∞ ≤ ε, (4.26)

where δ > 0 can be taken very close to 0 for small enough ε.

Remark 6. Taking m = 2 in Theorem 10, we obtain the following result: For any function u ∈ K2
α,β(I

d),

with |u|K2
α,β

≤ 1/D1, there exists a ReQU network Φu
ε with no more than d

2 log2
1
ε + d hidden layers, no

more than O
(
ε−1/2(12 log

1
ε )

d−1
)
nodes and nonzero weights, approximate u with a tolerance ε. The result

of using ReLU networks approximating similar functions is recently given by Montanelli and Du [39]. Their
conclusion is: for a ReLU network to approximate a function in K2

α,β(I
d) with tolerance ε, the number of

layers required is O(| log2 ε| log2 d), the number of nonzero weights required is O(ε−
1
2 | log2 ε|

3
2 (d−1)+1 log2 d).

Comparing the two results, we find that, while the number of layers required by ReQU networks might be
larger than ReLU networks, the overall complexity of the ReQU network is | log2 ε|

d times smaller than the
ReLU network.

Remark 7. When one use optimized hyperbolic cross polynomial approximation for funcion in Km
α,β(I

d),
with |u|Km

α,β
≤ 1/D2, the exponential growth on d with a base related to 1/ε in the required ReQU network

size is removed. Thus, in this case the curse of dimensionality is overcome. We note that, the constant D2

and the implicit constant hidden in the big O notation, still depend on d, but independent of ε.

5. Conclusion and future work

In this paper, we give constructive proofs to error bounds of approximating smooth functions by deep
neural networks using RePU as activation functions. The proofs rely on the fact that polynomials can be
represented by RePU networks with no approximation error. We construct several optimal algorithms for
such representations, in which polynomials of degree no more than n are converted into a ReQU network
with O(log2 n) layers, and the size of the network is of the same scale as the polynomial space to be
approximated. Then by using the classical polynomial approximation theory, we obtain error bounds for
ReQU networks approximating smooth functions, which show clear advantages of using ReQU activation
function, comparing to the existing results for ReLU networks. In general, the ReLU network required to
approximate a functions with finite-order continuous, is O(log 1

ε ) times larger the the corresponding ReQU
network. Here ε is the approximation error. To achieve ε-approximation for analytic functions, the number
of layer of ReQU network required is O(log2 log

1
ε ), while the corresponding number is O(log 1

ε ) for ReLU
network. For high dimensional functions with bounded mixed derivatives, we give error bounds that has
a weaker exponentially dependence on d, by using hyperbolic cross/sparse grid spectral approximation,
in particular if optimized hyperbolic cross polynomial projections are used, the curse of dimensionality is
overcome. The complexity of ReQU networks that required to achieve ε-approximation to functions with
bounded mixed derivatives up to 2, is much smaller than the corresponding ReLU networks as well. These
results hold for deep networks with non-rectified power units. The use of rectified units gives the neural
network the ability to approximate piecewise smooth functions efficiently.

The advantage of using deep over shallow neural ReQU networks is clear shown by our constructive
proofs: by using one hidden layer, a ReQU network can only recover quadratic polynomials; by using n
hidden layers, a ReQU network can recover polynomials of degree up to O(2n) exactly. The ReQU networks
we built for approximating smooth functions all have a tree-like structure, and sparsely connected. This may
give some hints on how to design appropriate structures of neural networks for some practical applications.
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We have shown that for approximating smooth functions, ReQU networks are superior to ReLU networks
in terms of approximation error. In practical applications, the functions to be approximated may have
different kinds of non-smoothness, which are problem dependent. The training method is another important
issue that affects the application of neural networks. We will continue our study in these directions. In
particular, we will study the approximation error of piecewise smooth functions with deep ReQU networks,
and investigate whether those popular training methods proposed to train ReLU networks are efficient for
training RePU networks. Meanwhile, we will try deep RePU networks on some practical problems where
the underlying functions are smooth, e.g. minimum action methods for large PDE system[46], PDEs with
random coefficients[47], and moment closure problem in complex fluid [48] and turbulence modeling[49], etc.
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D. Pflüger (Eds.), Sparse Grids and Applications - Stuttgart 2014, Lecture Notes in Computational Science and Engineer-
ing, Springer International Publishing, 2016, pp. 265–289.

[36] C. Schwab, R. Todor, Sparse finite elements for stochastic elliptic problems – higher order moments, Computing 71 (1)
(2003) 43–63. doi:10.1007/s00607-003-0024-4.

[37] F. Nobile, R. Tempone, C. Webster, A sparse grid stochastic collocation method for partial differential equations with
random input data, SIAM J. Numer. Anal. 46 (5) (2008) 2309–2345. doi:10.1137/060663660.

[38] F. Nobile, L. Tamellini, F. Tesei, R. Tempone, An adaptive sparse grid algorithm for elliptic pdes with lognormal diffusion
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