Approximations by Deep Neural Networks with Rectified Power Units

Li Lin

Peking University

September 10, 2019

- x^2 can be approximated within any error $\varepsilon>0$ by a ReLU network having the depth, the number of weights and computation units all of order $\mathcal{O}(\log \frac{1}{\varepsilon})$.
- ullet Rectified power units (RePUs) are defined as $(s \in \mathbb{N})$

$$\sigma_s(x) = \begin{cases} x^s, & x \ge 0, \\ 0, & x < 0. \end{cases}$$
 (1)

- σ₂:ReQU.
- σ₃:ReCU.

Some notations

Denote a neural network Φ with input of dimension d, number of layer L, by a matrix-vector sequence

$$\Phi = ((A_1, b_1), ..., (A_L, b_L)), \tag{2}$$

where $N_0=d,N_1,...,N_L\in\mathbb{N}$, A_k are $N_k\times N_{k-1}$ matrices, and $b_k\in\mathbb{R}^{N_k}$. If Φ is a neural network, and $\rho:\mathbb{R}\to\mathbb{R}$ is an arbitrary activation function, then define

$$R_{\rho}(\Phi): \mathbb{R}^d \to \mathbb{R}^{N_L}, \quad R_{\rho}(\Phi)(\boldsymbol{x}) = \boldsymbol{x}_L,$$
 (3)

where $R_{\rho}(\Phi)(\boldsymbol{x})$ is defined as

$$\begin{cases} \boldsymbol{x}_0 := \boldsymbol{x}, \\ \boldsymbol{x}_k := \rho(A_k \boldsymbol{x}_{k-1} + b_k), & k = 1, 2, ..., L - 1, \\ \boldsymbol{x}_L := A_L \boldsymbol{x}_{L-1} + b_L. \end{cases}$$
(4)

- number of hidden layers: L-1
- number of nodes: $\sum_{k=1}^{L-1} N_k$
- number of nonzero wights: $\sum_{k=1}^{L}(|A_k|_0+|b_k|_0)$

ullet The function x,x^2 and xy can be exactly represented with no approximation error using networks having just a few nodes and nonzero weights.

Lemma

For $\forall x, y \in \mathbb{R}$ the following identities hold:

$$x^2 = \beta_2^T \sigma_2(\omega_2 x),\tag{5}$$

$$x = \beta_1^T \sigma_2(\omega_1 x + \gamma_1), \tag{6}$$

$$xy = \beta_1^T \sigma_2(\omega_1 x + \gamma_1 y), \tag{7}$$

where

$$\beta_1 = \frac{1}{4} [1, 1, -1, -1]^T, \beta_2 = [1, 1]^T, \tag{8}$$

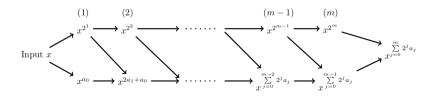
$$\omega_1 = [1, -1, 1, -1]^T, \omega_2 = [1, -1]^T, \gamma_1 = [1, -1, -1, 1]^T.$$
 (9)

• The Realizations are not unique!

Optimal realizations of polynomials by deep ReQU netorks

Theorem

- The monomial $x^n, n \in \mathbb{N}$ defined on \mathbb{R} can be represented exactly by a σ_2 network. The number of network layers, number of nodes and number of weights required to realize x^n are at most $\lfloor \log_2 n \rfloor + 2, 5 \lfloor \log_2 n \rfloor + 5$ and $25 \lfloor \log_2 n \rfloor + 14$, respectively. Here $\lfloor x \rfloor$ represents the largest integer not exceeding x for $x \in \mathbb{R}$.
- For any n>2, x^n can not be represented exactly by any ReQU network with only one hidden layer.



Univariate polynomials

Theorem

If f(x) is a polynomial of degree n on \mathbb{R} , then it can be represented exactly by a σ_2 neural network with $\lfloor \log_2 n \rfloor + 1$ hidden layers, and number of nodes and nonzero weights are both of order $\mathcal{O}(n)$. To be more precise, the number of nodes is bounded by 9n, and number of nonzero weights is bounded by 61n.

$$f(x) = a_{15}x^{15} + a_{14}x^{14} + \dots + a_{8}x^{8} + a_{7}x^{7} + a_{6}x^{6} + \dots + a_{1}x + a_{0}$$

$$= \underbrace{x^{8}}_{\xi_{3,0}} \left\{ \underbrace{x^{4}}_{\xi_{2,0}} \underbrace{\left[\underbrace{x^{2}}_{\xi_{1,0}} \underbrace{(a_{15}x + a_{14}) + (a_{13}x + a_{12})}_{\xi_{1,7}} \right] + \underbrace{\left[x^{2} \underbrace{(a_{11}x + a_{10}) + (a_{9}x + a_{8})}_{\xi_{1,5}} \right] \right\}}_{\xi_{2,3}}$$

$$+ \underbrace{\left\{ x^{4} \underbrace{\left[x^{2} \underbrace{(a_{7}x + a_{6}) + (a_{5}x + a_{4})}_{\xi_{1,3}} \right] + \underbrace{\left[x^{2} \underbrace{(a_{3}x + a_{2}) + (a_{1}x + a_{0})}_{\xi_{1,1}} \right] \right\}}_{\xi_{2,1}}.$$

Some remarks

- Use a σ_2 network of scale $\mathcal{O}(\log_2 n)$ to represent x^n exactly.
- Any polynomial of degree less than n can be represented exactly by a σ_2 neural network with $\lfloor \log_2 n \rfloor + 1$ hidden layers, and no more than $\mathcal{O}(n)$ nonzero weights.

Some notations

Define Jacobi-weighted Sobolev space $B^m_{\alpha,\beta}(I)$ as

$$B^m_{\alpha,\beta}(I):=\{u:\partial_x^k u\in L^2_{\omega^{\alpha+k},\beta+k}(I), 0\leq k\leq m\}, m\in\mathbb{N}, \qquad \textbf{(10)}$$

with norm

$$||f||_{B^m_{\alpha,\beta}} := \left(\sum_{k=0}^m ||\partial_x^k u||_{L^2_{\omega^{\alpha+k,\beta+k}}}^p\right)^{\frac{1}{2}}.$$
 (11)

The weight

$$\omega^{\alpha,\beta} = (1-x)^{\alpha}(1+x)^{\beta}, \quad \alpha,\beta > -1.$$
 (12)

Define the $L^2_{\omega^{\alpha,\beta}}$ -orthogonal projection $\pi_N^{\alpha,\beta}:L^2_{\omega_{\alpha,\beta}}(I)\to P_N$ as

$$(\pi_N^{\alpha,\beta}u - u, v)_{\omega^{\alpha,\beta}} = 0, \quad \forall v \in P_N.$$
(13)

Error bounds of approximating smooth functions

Theorem

Let $\alpha, \beta > -1$. For any $u \in B^m_{\alpha,\beta}(I)$, there exist a ReQU network Φ^u_N with $\lfloor \log_2 N \rfloor + 1$ hidden layers, $\mathcal{O}(N)$ nodes, and $\mathcal{O}(N)$ nonzero weights, satisfying the following estimate

• if $0 \le l \le m \le N+1$, we have

$$||\partial_x^l (R_{\sigma_2}(\Phi_N^u) - u)||_{\omega^{\alpha + l, \beta + l}} \le c\sqrt{\frac{(N - m + 1)!}{(N - l + 1)!}} (N + m)^{\frac{(l - m)}{2}} ||\partial_x^m u||_{\omega^{\alpha + l}}$$
(14)

• if m > N + 1, we have

$$||\partial_x^l (R_{\sigma_2}(\Phi_N^u) - u)||_{\omega^{\alpha + l, \beta_l}} \le c(2\pi N)^{-\frac{1}{4}} (\frac{\sqrt{\frac{e}{2}}}{N})^{N - l + 1} ||\partial_x^{N + 1} u||_{\omega^{\alpha + N + 1, \beta + N}}$$
(15)

where $c \approx 1$ for $N \gg 1$.

Theorem

For any given function $f(x) \in B^m_{\alpha,\beta}(I)$ with norm less than 1, where m is either a fixed positive integer or infinity, there exists a ReQU network Φ^f_ε with number of layers L, number of nonzero weights N satisfying

- if m is a fixed positive integer, then $L=\mathcal{O}(\frac{1}{m}\log_2(\frac{1}{\varepsilon}))$, and $N=\mathcal{O}(\varepsilon^{-\frac{1}{m}})$;
- if $m=\infty$, i.e. f is analytic, then $L=\mathcal{O}(\log_2(\log\frac{1}{\varepsilon}))$, and $N=\mathcal{O}(\frac{1}{\gamma}\log(\frac{1}{\varepsilon}))$, $\gamma \approx \mathcal{O}(\log(\log\frac{1}{\varepsilon}))$,

can approximate f within an error tolerance ε , i.e.

$$||R_{\sigma_2}(\Phi_{\varepsilon})^f - f||_{\omega^{\alpha,\beta}(I)} \le \varepsilon.$$
(16)

• For a foxed m, or $N \gg m$,

$$||R_{\sigma_2}(\Psi_N^u) - u||_{\omega^{\alpha,\beta}(I)} \le cN^{-m}||\partial_x^m u||_{\omega_{\alpha+m,\beta+m}}.$$
 (17)

• For analytic function, by taking $m=\infty$

$$||R_{\sigma_2}(\Phi_N^u) - u||_{\omega^{\alpha,\beta}(I)} \le c(2\pi N)^{-\frac{1}{4}} (\frac{\sqrt{e/2}}{N})^{N+1} ||u||_{B_{\alpha,\beta}^{\infty}}$$

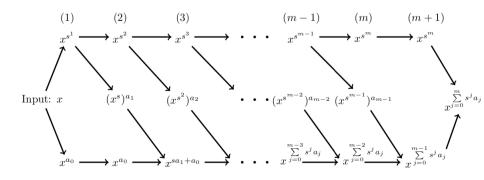
$$\le c' e^{-\gamma N} ||u||_{B_{\alpha,\beta}^{\infty}}$$
(18)

Approximation by using general rectified power units

Theorem

Regarding the problem of using $\sigma_s(x)(2 \le s \in \mathbb{N})$ neural networks to exactly represent monomial $x^n, n \in \mathbb{N}$, we have the following results:

- If s=n, the monomial x^n can be realized exactly using a σ_s networks having only 1 hidden layer with two nodes.
- If $1 \le n < s$, the monomial x^n can be realized exactly using a σ_s networks having only 1 hidden layer with no more than 2s nodes.
- If $n>s\geq 2$, the monomial x^n can be realized exactly using a σ_s networks having only $\lfloor \log_s n \rfloor + 2$ hidden layer with no more than $(6s+2)(\lfloor \log_s n \rfloor + 2)$ nodes, no more than $\mathcal{O}(25s^2\lfloor \log_s n \rfloor)$ nonzero weights.



Approximation of multivariate smooth functions

Theorem

If f(x) is a multivariate polynomial with total degree n on \mathbb{R}^d , then there exists a σ_2 neural network having $d\lfloor \log_2 n \rfloor + d$ hidden layers with no more than $\mathcal{O}(C_d^{n+d})$ activation functions and nonzero weights, can represent f with no error.

$$f(x,y) = \sum_{i=0}^{n} (\sum_{j=0}^{n-i} a_{ij} y^j) x^i =: \sum_{i=0}^{n} a_i^y x^i, \text{ where } a_i^y = \sum_{j=0}^{n-i} a_{ij} y^j$$
 (19)

Theorem

For a polynomials f_N in a tensor product space $Q_N^d(I_1 \times \cdots \cdot I_d) := P_N(I_1) \otimes \cdots \otimes P_N(I_d)$, there exists a σ_2 network having $d\lfloor \log_2 N \rfloor + d$ hidden layers with no more than $\mathcal{O}(N^d)$ activation functions and nonzero weights, can represent f_N with no error.

Error bounds

For $u \in B^m_{\alpha,\beta}(I^d)$, we have the following error estimate

$$||\pi_N^{\boldsymbol{\alpha},\boldsymbol{\beta}} u - u||_{L^2_{\omega^{\boldsymbol{\alpha},\boldsymbol{\beta}}}(I^d)} \le cN^{-m}|u|_{B^m_{\boldsymbol{\alpha},\boldsymbol{\beta}}}, 1 \le m \le N.$$
 (20)

Theorem

For any $u \in B^m_{\boldsymbol{\alpha},\boldsymbol{\beta}}(I^d)$, with $|u|_{B^m_{\boldsymbol{\alpha},\boldsymbol{\beta}}(I^d)} \leq 1$, there exists a σ_2 neural network Φ^u_{ε} having $\mathcal{O}(\frac{d}{m}\log_2\frac{1}{\varepsilon}+d)$ layers with no more than $\mathcal{O}(\varepsilon^{-\frac{d}{m}})$ nodes and nonzero weights, approximate u with $L^2_{\omega^{\boldsymbol{\alpha}},\boldsymbol{\beta}}(I^d)$ -error less than ε , i.e.

$$||R_{\sigma_2}(\Phi^u_{\varepsilon}) - u||_{L^2_{\omega^{\alpha},\beta}(I^d)} \le \varepsilon.$$
 (21)

Thanks!