SGD: General Analysis and Improved Rates

Ref: Gower R M, Loizou N, Qian X, et al. SGD: General Analysis and Improved Rates[J]. arXiv: Learning, 2019.

- Linear convergence on SGD
 - General sampling
 - Expected smoothness assumption
 - Linear convergence rates with strong quasi-convexity (this class includes some non-convex functions as well).
 - Furthermore, do not require the functions f_i to be convex.
- Gradient noise assumption Our analysis does not directly assume a growth condition. Instead, we make use of the remarkably weak expected smoothness assumption.
- Optimal mini-batch size We prove (see Section 4) that this is the case, upto a certain optimal mini-batch size, and provide exact formulas for the dependency of the stepsizes on the mini-batch sizes.
- Learning schedules
 - a closed-form formula for when should SGD switch from a constant stepsize to a decreasing stepsize (see Theorem 3.2).
 - Further, we clearly show how the optimal stepsize (learning rate) increases and the iteration complexity decreases as the mini-batch size increases for both independent sampling and sampling with replacement.
 - We also recover the well known $\frac{L}{\mu}\log(\frac{1}{\epsilon})$ convergence rate of gradient descent (GD) when the mini-batch size is n; this is the first time a generic SGD analysis recovers the correct rate of GD.
- Over-parameterized
 - In the case of over-parametrized models, we extend the findings of Ma et al. (2018) to independent sampling and sampling with replacement by showing that the optimal mini-batch size is 1.
 - Moreover, we provide results in the more general setting where the model is not necessarily over-parametrized.

Stochastic reformulation

Optimization problem

$$x^* = rgmin_{x \in \mathbb{R}^d} \left[f(x) = rac{1}{n} \sum_{i=1}^n f_i(x)
ight]$$
 (1)

where each f_i is smooth.

• Assumption Further, assume that f has a unique global minimizer x^* and is μ -strongly quasi-convex ($\mu > 0$):

$$f(x^*) \ge f(x) + \langle
abla f(x), x^* - x
angle + rac{\mu}{2} \|x^* - x\|^2$$
 (2)

for all $x \in \mathbb{R}^d$

- **Definition 1.1** We say that a random vector $v \in \mathbb{R}^n$ drawn from some distribution \mathcal{D} is a sampling vector if its mean is the vector of all ones $\mathbb{E}_{\mathcal{D}}[v_i] = 1$, $\forall i \in \{1, 2, ..., n\}$
 - Based on Definition 1.1, we introduce a stochastic reformulation of (1)

$$rgmin_{x\in \mathbb{R}^d} \mathbb{E}_{\mathcal{D}} \left[f_v(x) := rac{1}{n} \sum_{i=1}^n v_i f_i(x)
ight]$$
 (4)

• $f_v(x)$ and $abla f_v(x)$ are unbiased estimators of f(x) and abla f(x)

SGD step

$$x^{k+1} = x^k - \gamma^k
abla f_{v^k}(x^k)$$
 (6) where $v^k \sim \mathcal{D}$ is

sampled i.i.d. at each iteration and $\gamma^k > 0$ is a stepsize.

Expected smoothness

• Assumption 2.1 (Expected smoothness) We say that f is \mathcal{L} -smooth in expectation with respect to distribution \mathcal{D} if there exists $\mathcal{L} = \mathcal{L}(f, \mathcal{D}) > 0$ such that

$$\mathbb{E}_{\mathcal{D}}\left[\|\nabla f_v(x) - \nabla f_v(x^*)\|^2\right] \le 2\mathcal{L}(f(x) - f(x^*))$$

$$\mathbb{R}^d. \text{ For simplicity, we denote it by } (f, \mathcal{D}) \sim ES(\mathcal{L}).$$
(7)

• This assumption contains some non-convex cases.

Finite gradient noise

• Assumption 2.3 (Finite gradient noise) The gradient noise $\sigma = \sigma(f, D)$, defined by $\sigma^2 = \mathbb{E}_{\mathcal{D}}[\|\nabla f_v(x^*)\|^2]$ (8)

is finite.

for all $x \in$

Key lemma

• Lemma 2.4 If $(f,\mathcal{D}) \sim ES(\mathcal{L})$, then

$$\mathbb{E}_{\mathcal{D}}\left[\|\nabla f_v(x)\|^2\right] \le 4\mathcal{L}(f(x) - f(x^*)) + 2\sigma^2.$$
(9)

• This Lemma can be proved directly by combining equations (7) and (8).

Main results

• **Theorem 3.1** Assume f is μ -quasi-strongly convex and that $(f, D) \sim ES(\mathcal{L})$. Choose $\gamma^k = \gamma \in (0, \frac{1}{2\mathcal{L}}]$ for all k. Then iterates of SGD given by (6) satisfy:

$$\left[\|x^{k} - x^{*}\|^{2}\right] \leq (1 - \gamma \mu)^{k} \|x^{0} - x^{*}\|^{2} + \frac{2\gamma \sigma^{2}}{\mu}$$
(10)

Hence, given any
$$\epsilon > 0$$
, choosing stepwise $\gamma = \min\left\{\frac{1}{2\mathcal{L}}, \frac{\epsilon\mu}{4\sigma^2}\right\}$ and
 $k \ge \max\left\{\frac{2\mathcal{L}}{\mu}, \frac{4\sigma^2}{\epsilon\mu^2}\right\} \log\left(\frac{2\|x^0 - x^*\|^2}{\epsilon}\right)$, implies $\mathbb{E}\left[\|x^k - x^*\|^2\right] \le \epsilon$.
• Proof of Theorem 3.1 Let $r^k = x^k - x^*$. From (6), we have
 $\|r^{k+1}\|^2 = \|x^k - x^* - \gamma^k \nabla f_{v^k}(x^k)\|^2$
 $= \|r^k\|^2 - 2\gamma\langle r^k, \nabla f_{v^k}(x^k) \rangle + \gamma^2 \|\nabla f_{v^k}(x^k)\|^2$
Take expectation conditioned on x^k
 $\mathbb{E}_{\mathcal{D}}\|r^{k+1}\|^2 = \|r^k\|^2 - 2\gamma\langle r^k, \nabla f(x^k) \rangle + \gamma^2 \mathbb{E}_{\mathcal{D}}\|\nabla f_{v^k}(x^k)\|^2$
 $\le (1 - \gamma\mu)\|r^k\|^2 - 2\gamma[f(x^k) - f(x^*)] + \gamma^2 \mathbb{E}_{\mathcal{D}}\|\nabla f_{v^k}(x^k)\|^2$ Taking

expectation again and using (9)

 \mathbb{E}

$$egin{aligned} \mathbb{E} \| r^{k+1} \|^2 &\leq (1-\gamma\mu) \mathbb{E} \| r^k \|^2 - 2\gamma \mathbb{E} [f(x^k) - f(x^*)] + 4\gamma^2 \mathcal{L} \mathbb{E} (f(x) - f(x^*)) + 2\gamma^2 \sigma^2 \ &= (1-\gamma\mu) \mathbb{E} \| r^k \|^2 + 2\gamma (2\gamma \mathcal{L} - 1) \mathbb{E} [f(x^k) - f(x^*)] + 2\gamma^2 \sigma^2 \ &\leq (1-\gamma\mu) \mathbb{E} \| r^k \|^2 + 2\gamma^2 \sigma^2 \end{aligned}$$

Note that $\gamma \leq rac{1}{2\mathcal{L}}.$ Recursively we obtain

$$egin{aligned} \mathbb{E} \|r^k\|^2 &\leq (1-\gamma\mu)^k \|r^0\|^2 + 2\sum_{j=0}^{k-1} (1-\gamma\mu)^j \gamma^2 \sigma^2 \ &\leq (1-\gamma\mu)^k \|r^0\|^2 + rac{2\gamma\sigma^2}{\mu} \end{aligned}$$

- We control \mathcal{L} and σ via controlling \mathcal{D} .
- Furthermore, we can control the additive constant by carefully choosing the step size, as show in Theorem 3.2.
- **Theorem 3.2** (Decreasing stepsizes). Assume f is μ -quasi-strongly convex and that $(f, \mathcal{D}) \sim ES(\mathcal{L})$. Let $\mathcal{K} := \frac{\mathcal{L}}{\mu}$ and

$$\gamma^{k} = \begin{cases} \frac{1}{2\mathcal{L}} & k \leq 4\lceil \mathcal{K} \rceil \\ \frac{2k+1}{(k+1)^{2}\mu} & k > 4\lceil \mathcal{K} \rceil \end{cases}$$
(14) If $k > 4\lceil \mathcal{K} \rceil$, then

SGD iterates given by (6) satisfy:

$$\mathbb{E}\left[\|x^k - x^*\|^2\right] \le \frac{\gamma^2}{\mu^2} \frac{8}{k} + \frac{16[\mathcal{K}]^2}{e^2 k^2} \|x^0 - x^*\|^2 \tag{15}$$

• Proof of Theorem 3.2 Let $\gamma_k := \frac{2k+1}{(k+1)^2 \mu}$ and let k^* be an integer that satisfies $\gamma_k^* \leq \frac{1}{2\mathcal{L}}$. In particular this holds for $k^* \geq]4\mathcal{K} - 1]$. Note that γ_k is decreasing in k and consequently $\gamma_k \leq \frac{1}{2\mathcal{L}}$ for all $k \geq k^*$. This in turn guarantees that (13) holds for all $k \geq k^*$ with γ_k , that is

$$\mathbb{E} \|r^{k+1}\|^{2} \leq (1 - \gamma \mu)^{k} \|r^{0}\|^{2} + \frac{2\gamma\sigma^{2}}{\mu}$$

$$= \frac{k^{2}}{(k+1)^{2}} \mathbb{E} \|r^{k}\|^{2} + \frac{2\sigma^{2}}{\mu^{2}} \frac{(2k+1)^{2}}{(k+1)^{4}}$$

$$(k+1)^{2} \mathbb{E} \|r^{k+1}\|^{2} \leq k^{2} \mathbb{E} \|r^{k}\|^{2} + \frac{2\sigma^{2}}{\mu^{2}} \frac{(2k+1)^{2}}{(k+1)^{2}}$$
Summing from $t = k^{*}, \dots, k$

$$\leq k^{2} \mathbb{E} \|r^{k}\|^{2} + \frac{8\sigma^{2}}{\mu^{2}}$$

$$k = 8\sigma^{2}$$

Then

$$\leq k^{2} \mathbb{E} \|r^{*}\|^{2} + \frac{1}{\mu^{2}}$$

$$\sum_{t=k^{*}}^{k} [(t+1)^{2} \mathbb{E} \|r^{t+1}\|^{2} - t^{2} \mathbb{E} \|r^{t}\|^{2}] \leq \sum_{t=k^{*}}^{k} \frac{8\sigma^{2}}{\mu^{2}}$$
(52)

Then

$$(k+1)^{2}\mathbb{E}\|r^{t+1}\|^{2} - (k^{*})^{2}\mathbb{E}\|r^{k^{*}}\|^{2} \leq \sum_{t=k^{*}}^{k}[(t+1)^{2}\mathbb{E}\|r^{t+1}\|^{2} - t^{2}\mathbb{E}\|r^{t}\|^{2}] \leq \frac{8\sigma^{2}(k-k^{*})}{\mu^{2}}$$

We obtain

$$\mathbb{E}\|r^{t+1}\|^{2} \leq \frac{(k^{*})^{2}}{(k+1)^{2}} \mathbb{E}\|r^{k^{*}}\|^{2} + \frac{8\sigma^{2}(k-k^{*})}{\mu^{2}(k+1)^{2}}$$
(53)

For $k \le k^*$ we have that (13) holds, which combined with (53), gives $\frac{(k^*)^2}{8\sigma^2(k-k^*)}$

$$\begin{split} \mathbb{E} \|r^{t+1}\|^2 &\leq \frac{(\kappa^{-})}{(k+1)^2} \mathbb{E} \|r^{k^*}\|^2 + \frac{6\sigma^{-}(\kappa^{-}\kappa^{-})}{\mu^2(k+1)^2} \\ &\leq \frac{(k^*)^2}{(k+1)^2} \left((1-\gamma\mu)^{k^*} \|r^0\|^2 + \frac{2\gamma\sigma^2}{\mu} \right) + \frac{8\sigma^2(k-k^*)}{\mu^2(k+1)^2} \\ &= \frac{(k^*)^2}{(k+1)^2} \left((1-\frac{\mu}{2\mathcal{L}})^{k^*} \right) \|r^0\|^2 + \frac{\sigma^2}{\mu^2(k+1)^2} \left(8(k-k^*) + \frac{(k^*)^2}{\mathcal{K}} \right) \end{split}$$

Choosing k^* that minimizes the second term of above gives $k^* = 4\lceil \mathcal{K} \rceil$, which gives $\mathbb{E} \| r^{t+1} \|^2 \leq \frac{16\lceil \mathcal{K} \rceil^2}{(k+1)^2} \left(1 - \frac{1}{2\mathcal{K}} \right)^{4\lceil \mathcal{K} \rceil} \| r^0 \|^2 + \frac{8\sigma^2(k-2\lceil \mathcal{K} \rceil)}{\mu^2(k+1)^2}$ $\leq \frac{16\lceil \mathcal{K} \rceil^2}{e^2(k+1)^2} \| r^0 \|^2 + \frac{8\sigma^2}{\mu^2(k+1)}$

Specific \mathcal{D}

- Notations
 - $e_C:=\sum_{i\in C}e_i$ for $C\subseteq\{1,2,\ldots,n\}$
 - A sampling map S (to choose C): $\mathbb{P}[S = C] = p_C$, $\forall C \subset \{1, 2, \dots, n\}$ where $p_C \ge 0$ and $\sum_{C \subseteq \{1, 2, \dots, n\}} p_C = 1$.
 - A proper sampling $S\,p_i:=\mathbb{P}[i\in S]=\sum_{C:i\in C}p_C\geq 0,\quad orall I$

We now define practical sampling vector v = v(S) as followings:

• Lemma 3.3 Let S be a proper sampling, and let $\hat{P} = \text{Diag}(p_1, \dots, p_n)$. Then the random vector v = v(S) given by

$$w={\hat P}^{-1}e_S$$
 (17) is a sampling vector.

• Samplings **Independent sampling**. The sampling *S* includes every *i*, independently, with probability $p_i > 0$.

Partition sampling. A partition \mathcal{G} of [n] is a set consisting of subsets of [n] such that $\cup_{C \in \mathcal{G}} C = [n]$ and $C_i \cap C_j = \emptyset$ for any $C_i, C_j \in \mathcal{G}$ with $i \neq j$. A partition sampling S is a sampling such that $p_C = \mathbb{P}[S = C] > 0$ for all $C \in \mathcal{G}$ and $\sum_{C \in \mathcal{G}} p_C = 1$. τ -nice sampling. We say that S is a τ -nice if S samples from all subsets of [n] of cardinality τ uniformly at random. In this case we have that $p_i = \tau$ for all $i \in [n]$. So, $\mathbb{P}[v(S) = \frac{n}{\tau}e_C] = \frac{1}{C_n^{\tau}}$ for all subsets $C \subseteq \{1, \ldots, n\}$ with τ elements.

Bounding \mathcal{L} and σ^2

• Assumption 3.4 There exists a symmetric positive definite matrix $M_i \in \mathbb{R}^{d \times d}$ such that $f_i(x+h) \ge f_i(x) + \langle \nabla f_i(x), h \rangle + \frac{1}{2} \|h\|_{M_i}^2$ (18)

for all $x, h \in \mathbb{R}^d$, and $I \in [n]$, where $||h||_{M_i} := \langle M_i h, h \rangle$. In this case we say that f_i is M_i -smooth. Furthermore, we assume that each f_i is convex.

• **Theorem 3.6** Let S be a proper sampling, and v = v(S) (i.e., v is defined by (17). Let f_i be M_i -smooth, and $P \in \mathbb{R}^{n \times n}$ be defined by $P_{ij} = \mathbb{P}[i \in S \& j \in S]$. Then $(f, \mathcal{D}) \sim ES(\mathcal{L})$,

$$\mathcal{L} \leq \mathcal{L}_{\max} := \max_{i \in [n]} \left\{ \sum_{C:i \in C} \frac{p_C}{p_i} L_C \right\}$$
where
$$\leq \frac{1}{n} \max_{i \in [n]} \left\{ \sum_{j \in [n]} P_{ij} \frac{\lambda_{\max}(M_j)}{p_i p_j} \right\}$$
and
$$L_C := \frac{1}{n} \lambda_{\max}(\sum_{j \in C} \frac{1}{p_j} M_j).$$
If $|S| = \tau$, then
$$L \leq \mathcal{L}_{\max} \leq L_{\max} = \max_{i \in [n]} \lambda_{\max}(M_i)$$
Theorem 3.9 Let
$$h_i = \nabla f_i(x^*).$$
Then
$$\sigma^2 = \frac{1}{n^2} \sum_{i,j \in [n]} \frac{P_{ij}}{p_i p_j} \langle h_i, h_j \rangle.$$