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® |inear convergence on SGD

o General sampling
o Expected smoothness assumption
o Linear convergence rates with strong quasi-convexity (this class includes some non-
convex functions as well).
o Furthermore, do not require the functions f; to be convex.
e Gradient noise assumption Our analysis does not directly assume a growth condition.
Instead, we make use of the remarkably weak expected smoothness assumption.

e Optimal mini-batch size We prove (see Section 4) that this is the case, upto a certain optimal
mini-batch size, and provide exact formulas for the dependency of the stepsizes on the mini-
batch sizes.

® |earning schedules

o a closed-form formula for when should SGD switch from a constant stepsize to a
decreasing stepsize (see Theorem 3.2).

o Further, we clearly show how the optimal stepsize (learning rate) increases and the
iteration complexity decreases as the mini-batch size increases for both independent
sampling and sampling with replacement.

o We also recover the well known %log(%) convergence rate of gradient descent (GD)
when the mini-batch size is n; this is the first time a generic SGD analysis recovers the
correct rate of GD.

e Over-parameterized

o Inthe case of over-parametrized models, we extend the findings of Ma et al. (2018) to
independent sampling and sampling with replacement by showing that the optimal
mini-batch size is 1.

o Moreover, we provide results in the more general setting where the model is not
necessarily over-parametrized.

Stochastic reformulation

Optimization problem
2" = argmin, i [f(z) = 3 31 fi(2)] (1)

where each f; is smooth.

e Assumption Further, assume that f has a unique global minimizer x* and is p-strongly
quasi-convex (u > 0):
f(@*) = f(z) + (Vf(z), 2" — ) + gllz* — | (2)
for all z € R?



e Definition 1.1 We say that a random vector v € R™ drawn from some distribution Dis a
sampling vector if its mean is the vector of all ones Ep [v;] =1, Vi€ {1,2,...,n}

o Based on Definition 1.1, we introduce a stochastic reformulation of (1)
argmin, g« Ep [fo(z) == L 30 | v, fi(z)] (4)
o f,(z)and V f,(z) are unbiased estimators of f(z) and V f(z)

SGD step ot = gk — ARV f o (aF) (6) where v* ~ Dis
sampled i.i.d. at each iteration and v >0isa stepsize.

Expected smoothness

e Assumption 2.1 (Expected smoothness) We say that f is £-smooth in expectation with
respect to distribution D if there exists L = L(f, D) > 0 such that

Ep [|Vfu(z) = V£ (@)?] <2L(f(z) - f(z")) (7)
for all z € R?. For simplicity, we denote it by (f, D) ~ ES(L).
® This assumption contains some non-convex cases.

Finite gradient noise

e Assumption 2.3 (Finite gradient noise) The gradient noise o = o( f, D), defined by
o? = Ep[[|Vf(z")I] (8)

is finite.

Key lemma

e Lemma 24 If (f,D) ~ ES(L), then
Ep [[Vfu(@)|?] <4L(f(2) - f(z*)) + 20°. (9)

o This Lemma can be proved directly by combining equations (7) and (8).
Main results

e Theorem 3.1 Assume fis p-quasi-strongly convex and that ( f, D) ~ ES(L). Choose
¥ =7 € (0, ﬁ] for all k. Then iterates of SGD given by (6) satisfy:

* % 2v0?
E[[lz* —2*|°] < (1 —)*|2® — 2| + = (10)
Hence, given any € > 0, choosing stepwise v = min i, %} and
o2 20—z >\ . . .
k > max {%, ‘:7} log<M), implies E [||z*F — z*|?] <.

o Proof of Theorem 3.1 Let ¥* = zF — z*. From (6), we have
[P = 2 — 2% — Vo (2F) )12

= H,,,k ”2 - 27<Tka vak (wk» + 72 vavk (xk)Hz
Take expectation conditioned on zk

Ep[[r* 12 = [Ir*|* — 2y(r", V£(z*)) + VEp ||V fi (")

< (L= yu)|Ir*)* = 29[f (") — f(@*)] + VEp ||V fiu (")
expectation again and using (9)

Taking



E[r¥ 12 < (1 — yp)E|r¥ |2 — 29E[f(z¥) — f(= )]+4'y LE(f(z) - f(w*))+2'r2<f2

= (1= y)Ellr"|* + 27(2% ~ DE[f(z*) — f(z")] + 27’0
<(1- w)EHrkllz + 270
Note that v < <37 Recurswely we obtain

k—1
E[r*|I> < (1 - w)'“IITOH2 +2) (1 - yp)yiy’o’
=0

2v0?

k.02
< (1= yw)"Ir |17 +
o We control £ and ¢ via controlling D.
o Furthermore, we can control the additive constant by carefully choosing the step size,
as show in Theorem 3.2.
e Theorem 3.2 (Decreasing stepsizes). Assume f is u-quasi-strongly convex and that

(f,D) ~ ES(L). Let K := % and

— k < 4[K]
V= M (14) If & > 4[K], then
k> 4[K]

(k+1)"p

SGD iterates given by (6) satisfy:

X 16K X
E[[lz* —2*|?] < 58+ 2L 20 — 2| (15)

2k+1
(k+1)*u
In particular this holds for k* >]4/C — 1]|. Note that y;, is decreasing in k and

consequently 7, < 5~ for all k > k*. This in turn guarantees that (13) holds for all
k > k* with g, that is

o Proof of Theorem 3.2 Let v := and let k* be an integer that satisfies v; < 5

[: .

2v0?
E[r* P < (1 = yp)*[|r°)* + =——
R wna 207 (2k+1)? (51)
T (k+1)? Il w2 (k+ 1)
(k-4 177 < a2 4 2 B D
Then 8M2 (k+1) Summing fromt =k*,... k
o
< KE[Ir*|]® + —-
k k. gy
D [+ 1)PE|rH P — £E[F)?] < Z— (52)
P—E oW
Then
k 2 *
* 8 k_k
(k+1)2E"Tt+1H2 o (k*)zEH’I‘k HZ < Z[(t+1)2E‘|Tt+1H2 —t2EH’I‘tH2] < 9 ('u2 )
t=k*
We obtain
(Ic"‘)2 . 802(k — k*)
Elr P < —=Elr* |+ 57— (53)
(k+1) pr(k+1)

For k < k* we have that (13) holds, which combined with (53), gives

k*)? . 872 (k — k*
B2 < ) gy B R
k+1) 2kt 1)

k*)? . 202 802 (k — k*

< B (@ oy + 22 ) 4 B

e+ 1) w ) AT

o (k*)2 IRV 012 o’ * (k*)2
— —(k—|— 1)2 <(1 — E)k ) ”’I‘ H + —,U,Z(k-l— 1)2 (8(k—k )+ T)



Choosing k* that minimizes the second term of above gives k* = 4[], which gives
16K 14K 802 (k — 2[K
E||rt+1||2 < ’7 ] (1 > ||TOH2 + o ( ( —‘)

~ (k+12\" 2K 12 (k + 1)2
16[ K12 802
< 5 I+ =
e2(k+1) pr(k+1)

Specific D

e Notations

°© ec:i=) .06 forCC{l,2,...,n}

o Asampling map S (to choose C):P[S = C| = pc, VC C{1,2,...,n}wherepc >0
and ch{m,...,n} pc =1

o Apropersampling Sp; :=Pli € S| = ¢,ccpc >0, VI

We now define practical sampling vector v = v(.S) as followings:

e Lemma 3.3 Let S be a proper sampling, and let P = Diag(p1,...,ps)- Then the random

vector v = v(S) given by

v = P_leg (17) is a sampling vector.

e Samplings Independent sampling. The sampling S includes every ¢, independently, with
probability p; > 0.
Partition sampling. A partition G of [n] is a set consisting of subsets of [n] such that
UcegC = [n]and C; N C; = O for any C, C; € Gwithi £ j. A partition sampling S'is a
sampling such that po = P[S = C] > 0 forallC € Gand ), . pc = 1. 7-nice sampling.
We say that S is a T-nice if S samples from all subsets of [n] of cardinality 7 uniformly at
random. In this case we have that p; = 7 for all i € [n]. SO,P[v(S) = Zec] = CL; for all

subsets C' C {1,...,n} with 7 elements.

Bounding £ and ¢?

e Assumption 3.4 There exists a symmetric positive definite matrix M; € R?*¢ such that
fi(z +h) = fi(z) + (Vfi(2), h) + 3B, (18)
forallz,h € RY, and I € [n], where ||h|p; := (M;h, h). In this case we say that f; is M;-
smooth. Furthermore, we assume that each f; is convex.
e Theorem 3.6 Let S be a proper sampling, and v = v(S) (i.e., v is defined by (17). Let f; be
M;-smooth, and P € R™™" be defined by P;; = P[i € S &j € S]. Then (f,D) ~ ES(L),

L < Lopax := I_nax{ Z p—CjLC}

i€[n] i Di
where cree and L¢ := lAmax(E'ec le). If |S| = 7, then
1 Amax (M) 8 I B
Z j
< . max Bj—
n ic(n] j€ln] DiD;

L < Emax < Lmax = MaX;e[p] )\max (Mz)
* P
e Theorem 3.9 Leth; = V;(z*). Then g2 = # > /

Jen] p;p;

(hi,hj).
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