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Linear convergence on SGD

General sampling
Expected smoothness assumption
Linear convergence rates with strong quasi-convexity (this class includes some non-
convex functions as well).
Furthermore, do not require the functions  to be convex.

Gradient noise assumption Our analysis does not directly assume a growth condition.
Instead, we make use of the remarkably weak expected smoothness assumption.

Optimal mini-batch size We prove (see Section 4) that this is the case, upto a certain optimal
mini-batch size, and provide exact formulas for the dependency of the stepsizes on the mini-
batch sizes.

Learning schedules

a closed-form formula for when should SGD switch from a constant stepsize to a
decreasing stepsize (see Theorem 3.2).
Further, we clearly show how the optimal stepsize (learning rate) increases and the
iteration complexity decreases as the mini-batch size increases for both independent
sampling and sampling with replacement.
We also recover the well known  convergence rate of gradient descent (GD)

when the mini-batch size is ; this is the first time a generic SGD analysis recovers the
correct rate of GD.

Over-parameterized

In the case of over-parametrized models, we extend the findings of Ma et al. (2018) to
independent sampling and sampling with replacement by showing that the optimal
mini-batch size is 1.
Moreover, we provide results in the more general setting where the model is not
necessarily over-parametrized.

Stochastic reformulation  

Optimization problem

where each  is smooth.

Assumption Further, assume that  has a unique global minimizer  and is -strongly
quasi-convex ( ):

for all 



Definition 1.1 We say that a random vector  drawn from some distribution  is a
sampling vector if its mean is the vector of all ones 

Based on Definition 1.1, we introduce a stochastic reformulation of (1) 

 and  are unbiased estimators of  and 

SGD step  where  is
sampled i.i.d. at each iteration and  is a stepsize.

Expected smoothness  

Assumption 2.1 (Expected smoothness) We say that f is -smooth in expectation with
respect to distribution  if there exists  such that 

for all . For simplicity, we denote it by .
This assumption contains some non-convex cases.

Finite gradient noise  

Assumption 2.3 (Finite gradient noise) The gradient noise , defined by 

is finite.

Key lemma  

Lemma 2.4 If , then

This Lemma can be proved directly by combining equations (7) and (8).

Main results  

Theorem 3.1 Assume  is -quasi-strongly convex and that . Choose 
 for all . Then iterates of SGD given by (6) satisfy:

Hence, given any , choosing stepwise  and

 implies .

Proof of Theorem 3.1 Let . From (6), we have

Take expectation conditioned on 

 Taking

expectation again and using (9) 



Note that . Recursively we obtain 

We control  and  via controlling .
Furthermore, we can control the additive constant by carefully choosing the step size,
as show in Theorem 3.2.

Theorem 3.2 (Decreasing stepsizes). Assume  is -quasi-strongly convex and that 
. Let  and 

 If , then

SGD iterates given by (6) satisfy:

Proof of Theorem 3.2 Let  and let  be an integer that satisfies .

In particular this holds for . Note that  is decreasing in  and
consequently  for all . This in turn guarantees that (13) holds for all 

 with , that is 

Then  Summing from  

Then

We obtain 

For  we have that (13) holds, which combined with (53), gives 



Choosing  that minimizes the second term of above gives , which gives 

 

Specific  

Notations

 for 
A sampling map  (to choose ):  where 
and .

A proper sampling  

We now define practical sampling vector  as followings:

Lemma 3.3 Let  be a proper sampling, and let . Then the random
vector v = v(S) given by 

 is a sampling vector.

Samplings Independent sampling. The sampling  includes every , independently, with
probability .
Partition sampling. A partition  of  is a set consisting of subsets of  such that 

 and  for any  with . A partition sampling  is a
sampling such that  for all  and . -nice sampling.
We say that  is a -nice if  samples from all subsets of  of cardinality  uniformly at
random. In this case we have that  for all . So,  for all

subsets  with  elements.

Bounding  and  

Assumption 3.4 There exists a symmetric positive definite matrix  such that

for all , and , where . In this case we say that  is -
smooth. Furthermore, we assume that each  is convex.
Theorem 3.6 Let  be a proper sampling, and  (i.e.,  is defined by (17). Let  be 

-smooth, and  be defined by . Then ,

where  and . If , then

Theorem 3.9 Let . Then 
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