Jinchao Xu

PSU-PKU Joint Course (497):
An Introduction to Deep Learning

Summer 2019

Contributors:

This set of notes are based on contributions from many of graduate students, post-
doctoral fellows and other collaborators. Here is a partial list:

Juncai He, Li Jiang, Shaobo Liang, Pengfei Yin, Qian Zhang.....

Contents

1 An Introduction to Machine Learningand DNN 5
1.1 Notes for Istday of the firstweek 5
1.2 Notes for 2nd day of the firstweek 6

121 NOtationS « o v vttt ettt e i 6
1.2.2 Linearly separable sets...............cccoiiiiiiena... 6
1.2.3 Other notions of linearly separable sets 8
1.2.4 LogiStic TEZIESSION . . v v v v vttt 9
1.2.5 Introduction to Logistic regression 11
1.3 Notes for 3rd day of the firstweek 12
1.3.1 Logistic Regressionoiiiiiiviinneinn... 12
1.3.2 Training Algorithm: Gradient Descent Based Methods 15
1.4 Notes for 4th day of the first week................. 17
1.4.1 Gradient Descent (GD) Method 17
1.4.2 Understand GD from the Viewpoint of Dynamic System ... 17
1.4.3 Stochastic Gradient Descent (SGD) 18
1.44 Non-linearly Separable 20
1.4.5 Deep Neural Network (DNN) Function 21
1.5 Notes for 5th day of the firstweek............................. 22
1.5.1 Recall forLastLecturecccoiiiiieeona... 22
1.5.2 Deep Neural Network Functions 22
1.5.3 Activation Functions 23
1.5.4 Special Case: 1-hidden Layer 24
1.6 Notes for 6th day of the first week................. 27
1.6.1 Recall for Last Lecturecccoiiiiiieonn.. 27
1.6.2 Application to image classification...................... 27
1.6.3 Image Classification............oooiiiiiiniiinenn... 28

2 Supplemental Material: Convolution Filters....................... 31
2.1 Examples of convolution, 31
2.2 Calculation with convolutionsc..ooiviiiin.. .. 31

2.3 Image convolution examples, 32

Contents

2.3.1
232
233
234
235
2.3.6
2.3.7
2.3.8

References. . ..

Simple box blur 32
Gaussianblur 34
Line detection with image convolutions. 35
Edge detection, 38
The Sobel Edge Operatorccovveiinvennn... 39
The laplacian operatorcouiveiineinnnennnenn. 41
The Laplacian of Gaussian 43
SUMMATY . o vttt et et et e et e 44
... 45

1

An Introduction to Machine Learning and DNN

1.1 Notes for 1st day of the first week

The most content of this section is on the slides, here is just some supplement for the
slides.

1. Heaviside function.

1, x>0,
1.1 H(x) =
(1.1) {0, x<0.
2.
1 0, x > —o0,
1.2 =
(1.2) s(x) T —>{]’ o,

3. Rectified linear unit.

) Z O’
(1.3) ReLU(x) = max{0,x} = 4
0, x<0.
Notice that
d
(1.4) —ReLU(x) = H(x).
dx

Given a vector x, we define two kinds of operations. One is linear operation
which maps x to wx + b, while another operation is activation which maps x to o(x)
with an activation function o

Deep neural network can be regarded as compositions and combinations of the
above two operations.

1.2. NOTES FOR 2ND DAY OF THE FIRST WEEK

1.2 Notes for 2nd day of the first week

1.2.1 Notations

We use R? to denote the d-dimensional real vector space, and use R¥d o denote the
(k x d)-dimensional real matrix space. For example,

X1
(1.5) x=|"]ere
Xd
wi Wi Wiz = Wid
(1.6) W= wal _ | W21 Wa2 --- Wag c RAxd
Wd Wkl Wk2 *** Wkd

where w; = (w;j; wp -+ wig) € R,
Given W € R and b € R?, a linear function f : RY — R can be defined as

wix + by

(1.7) f)=Wx+b= Wz’.‘sz eRf, VxeR9

wiX + by

In R?, given w € R% b € R, the point set {x : wx + b = 0} is called a hyperplane,
or (d — 1)-dimensional hyperplane. A hyperplane is a point in a 1-d space, a straight
line in a 2-d space and a plane in a 3-d space.

1.2.2 Linearly separable sets

Definition 1. The two sets Ay, A» € RY are linearly separable if and only if there
exists a hyperplane

(1.8) Hy={x:wx+b=0}
suchthatwx+b>0ifxe Ajandwx+b <0ifx € A,.

A intuitive explanation of the definition is that two sets are linearly separable iff they
can be separated by a hyperplane. But when it comes to the multi-class case, we
don’t have such intuitive explanation.

Definition 2 (Linearly Separable). A collection of subsets Ay, ...,Ax € R? are lin-
early separable if there exists

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Fig. 1.1. Two linearly separable sets

wi b
(1.9) W=|:|eR* b=|:]|eR

Wy by

such that, foreach 1 <i<kand j+i

(1.10) (Wx +b); > (Wx+b)j, Vx € A,
or
(1.11) W[x+bl'>ij+bj, Vx €A,

Lemma 1. Assume that Ay, ..., Ay are linearly separable and 0 = (W, b) where W €
R*" and b € R* satisfy (1.11). Define

(1.12) Ii@ ={xeR": Wx+b);>Wx+b);, Vj+i)
Then for each i,

(1.13) A Cc T(0)

Fig. 1.2. linearly separable sets in 2-d space while k = 3

We can obtain many facts of linearly separable sets in this lemma.

1.2. NOTES FOR 2ND DAY OF THE FIRST WEEK

1. Denotes 0I';(0) as the boundary of I';(6), and the union of all boundaries dI" as

k
(1.14) or = U ori(0)
i=1

then we have
(1.15) T1(0)UTy(0)U---UT(@)Udl =RY,

where I';(0) N I";j(8) = 0 and AT is a set of measure zero.
This means that most points of RY will be attached to a unique class unless a set
of measure zero.

2. Each (@) is a polygon whose boundary consists of hyperplanes

(116) H,JZ{(Wl—WJ)X+(b,—bj)=0}, V]#z

3. Different W, bs can generate the same classifier. The truly effective parameters
are (w; —w;) and (b; — b;) for all i # j which means if we add a same vector to w;
and a same scalar to b; for all 1 < i < k, it won’t affect the result of clssification.

1.2.3 Other notions of linearly separable sets

Definition 3 (All-vs-One Linearly Separable). A collection of subsets Ay, ..., Ax C
R4 is all-vs-one linearly separable if for eachi = 1, ...k, A; and UjxiAj are linearly
separable.

Fig. 1.3. All-vs-One linearly separable sets

This kind of linearly separable is intuitive. That means for each class we have a
hyperplane to separate it from the rest. Easy to observe that it’s equivelant that there
exists a W, b such that

1.17) wix+b;>0,wix+b; <0,VxeA;, j#ii=1,--- k
Definition 4 (Pairwise Linearly Separable). A collection of subsets Ay, ..., Ay C R?

is pairwise linearly separable if for each pair of indices 1 <i < j <k, A;and A; are
linearly separable.

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

This notion is also easy to understand. It means each two different classes can be
linearly separated. Linearly separable sets is a special type of pairwise linearly sepa-
rable sets because it requires some consistency with the parameters. Mathematically,
we can write this consistency as

(1.18) WijZW,‘k+ij,b,‘j=b,‘k+bkj Vk £ 1, J.

In 3-class case in 2-d space, that means we need the three lines to intersect at one
point. We can use this to construct some counter-examples which are pairwise lin-
early separable but not linearly separable.

Lemma 2. When k = 2, those three kinds of linearly separable are equivalent.
Proof. Please prove it yourself as an exercise. [

Lemma 3. Genarally, all-vs-one linearly separable = linearly separble = pairwise
linearly separable.

Proof. Please prove it yourself as an exercise. [

1.2.4 Logistic regression

Assume that we are given k linearly separable sets A}, Ay, -+ ,Ax € R4, we define
the set of classifiable weights as

(1.19) O={0=W,b):wix+b;>wjx+bj, Vx€A;,j+i,i=1,--- ,k}

which means those (W, b) can separate A, A,, - , Ay absolutely correctly. And our
assumption implies that & # 0.

Now we know the existence of linearly classifiable weights. But how can we find one
element in @?

Definition 5 (soft-max). Given parameter 0 = (W, b), a soft-max mapping p : A —
R¥ is a mapping with the following fomulation

ew'lirh.
Wx+b +b
e 1 et
(1'20) p(e, x) = eWxth . 1 = k .
Z eWivthi eka+bk
i=1
ewlx+b]
ewzx+b2
where Wx + b = L 1=(11---D7 € RX and the i-th component pi(0, x) =
eka+bk

(zk: ew,»x+h[)—l ew,»x-*—h;.
i=1

The soft-max mapping have several important properties.

1.2. NOTES FOR 2ND DAY OF THE FIRST WEEK

1. 0< pi(e,x) < 1, Zipi(ewx) =1L
This implies that p(0, x) can be regarded as a probability distribution of data
points which means given x € R?, we have x € A; with probability p;(8, x),
i=1,--- k.

2. pi(0,x) > pj(0,x) & wix +b; > w;x +bj.
This implies that the linearly classifiable weights have an equivalent discription
as

(1.21) O ={0:pi(0,x) > pj(0,x), Vx €A, j#ii=1,k}

3. We usually use the max-out method to do classification. For a given data point
x, we first use a soft-max mapping to map it to p(8, x), then we attached x to the
class i = argmax; p;(, x).

In probability, that means we pick the label i as the class of x such that x € A;
has the biggest probability p;(0, x).

We denote the function
k
(1.22) PO) =][| 6.0
i=1 x€A;

which is called maximum likelihood function in Statistics. We’ll show that can use
this function to help us find some linearly classifiable weights.

Theorem 1. Assume that the sets Ay, A, --- , Ay are linearly separable. Then we
have

1
(1.23) {6: PO) > 5} co.

Proof. This theorem means that if P(8) > %, then we must have 8 € ©. It is

equivalent to the proposition that if @ ¢ @, we must have P(@) < 1. So we only need
to prove the second proposition.

For any 8 ¢ ®. There must exist an iy ,an xo € A;, and a jy # ip such that
(1.24) WigX + biy < wjy + bj.

Then we have

1.25 o]
(‘) pf()(’x) - eW,'O)H-b,‘O + eW,'O)H-bjO - E'
Notice that p;(x,0) < 1 foralli=1,--- ,k, x € D.

So

1
(1.26) P(0) < p;y(0,x) < 7
0

10

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Lemma 4. [f 0 € ©, we have

(1.27) lim pi(af)=1e xeA,.
a—+0o0
Proof.
<. Easy to observe that for all x € A;,
. . 1
(1.28) GLHPOO pi(0,x) = wl_lglco T3 3 erlOreeb) Gl 1.
J#i
=. Easy to observe that for all x ¢ A;,
1 1

(1.29) pi(aB,x) = PSPy <3

J#i
This implies that if x ¢ A;, lim,—,c p;(@@) # 1 which is equivalent to the proposition
that if lim,_,o pi(@@) = 1, then x € A;. D

Theorem 2.
(1.30) e={0: lir_{l P(aB) = 1}.
Proof.

=.If 0 € O, we have lim,_, ;- p;(aB) = 1 for all x € A;. So

aan g oo~ i [[]r@0 =[] m p0.0 =1

i=1 xeA; i=1 xeA;
<. If lim P(a@) = 1, there must exist one ay > 0 such that P(ay0) > % From

a—+0oo

Theorem 1, we have apf € @, which means 8 € @. [

1.2.5 Introduction to Logistic regression

Theorem | implies that if we can obtain a classifiable weight through maximizing
P(0), while theorem 2 tells us that P(@) won’t have a minimum actually.

The design of logistic regression is that maximize P(0) is equivalent to miniimize
log P(0) which the second one is more convenient to evaluate the gradient. Mean-
while, we add a regularization term R(0) to the objective function which makes the
optimization problem has a unique solution.

Mathematically, we can formulate Logistic regression as

(1.32) min ~log P(8) + AR(6).

where R(6) usually equals to [|6]7. = 3 ; 67,.
Lemma 5. —logP(0) is a convex function.

Lemma 6. If A}, Ay, - -+ , Ay are linearly separable, —log P(0) has no global mini-
mum.

Theorem 3. —log P(0) + AR(0) has a global minimizer for sufficiently small 1 > 0.

11

1.3. NOTES FOR 3RD DAY OF THE FIRST WEEK

1.3 Notes for 3rd day of the first week

1.3.1 Logistic Regression

Recall that the definition of linear separable sets.

Definition 6. A collection of subsets Ay, ..., A, C R are linearly separable if there
exists

Wi b]
(1.33) W= eRFIp=|:|erRM

Wi b

such that for given 1 <i < kandeach j+i

(1.34) (Wx+b)i>(Wx+b);,Vx €A

ie.,

(1.35) i =argmax(Wx + b);,Vx € A;
J

The probability density function of the distribution over the k categories should sat-
isfy

k
(1.36) 0<pi6,x)<1 and Zp;(@, X = 1.
i=1

Here, p;(6, x) is the probability of x in the i-th category, i.e., x € A;. Then, we intro-
duce a popular choice of the probability density function in classification problems.

Definition 7. The standard softmax function o : R* — R¥ is defined by the formula

i

e

(137) (@) =
ZI;=1 e’

fori=1,....,kandz=(z,...,)" €RF

Let z = Wx + b, we obtain

wix+b
Wx+b 1 et] pl(e’ x)
(1.38) P08 = = | =]
ewk,wbk pk(e’ X)
where ¢¢ = (¢, ...,e¢%)T forany z € R¥and 1 = (1,...,)T with appropriate dimen-

sion.

12

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Note that Ay, ..., Ay are linearly separable if and only if p;(6, x) > p;(6, x) for any
x € A;, i # j since the exponential function is monotone increasing. Hence logistic
regression will do a “prefect” job.

Denote the set of classifiable weights

0 ={0=(W,b): pi(6,x) > p;(0,x),x € Api # j}.

We proved the following results:

1. 6 € O if and only if lim,— p(a@f) = 1. We note that 0 < p;(8) < 1 for any 6, so
p(6) has no global maximum.

2. {0:p6) 2 3} c 6.

In previous section, we already show that we can construct a function with global
maximum by adding a regularization term.

Lemma 7. Assume that R(6) > 0 is an non-negative function such that
(1.39) O*(A) = argmax p(@)e R £0, Vi1>0

then for sufficiently small A > 0,

1
01 c {0 1 p6) > 5} co.
Proof. Given 6 € 6. Let @ > 0 be such that

2
plabp) = 3
Let A4 > 0 be sufficiently small such that
3
—AR©) < 2
¢ 4
For any 8 € ©*

2 1
p(e)e—/lR(Q) > p(a,eo)e—/lR(rmo) > g . 5

AW

Then p() > 1. D
Since —log(-) is strictly decreasing, we can transform the maximal problem to a
minimal problem
0" = argmin {— log p(9)e’AR(9)}

Recall that
(1.40) argmin g(0) = {6" : g(6") = min g(6)},

that is, the set of all minimizers. And note that

13

1.3. NOTES FOR 3RD DAY OF THE FIRST WEEK

argmin {—log p(9)} # 0
The definition of Likelihood function
p(O) = ITL Iep, pi(6. x).

and logarithmic likelihood function

—log p(0) = —log (1T} T,ea, pi(6, 1))
k
> (= log pi(6,x))
i=1 x€A;
k
=13 (log(e™) — (wix + by)
XEA;

i=1

(1.41)

Now we consider the “training set” containing all labelled data:
(1.42) UL Ai=1{x;eR, 1< j<N)
For x; € A;, y; is the corresponding label
(1.43) yi=e¢

where e¢; is the k dimensional vector with the ith component being 1 and the others
being 0. In the classical cat-dog-rabbit problem,

cat « (1,0,0)"
(1.44) dog « (O, 1,0)"
rabbit — (0,0, 1)

For x; € A;, the label y; = e;, then w;x; + b; = (Wx; + b) - y;, then the logarithmic
likelihood function (1.41) can be written as

N
(1.45) —log p(6) = > log(e™ ™ — (Wx; +b) -y,

J=1

which is so-called cross-entropy loss function.
Logistic regression is to find

(1.46) argmin {L(é),) = —log (() e—/lR(H))}

and

(1.47) L(O) = L6,) =) (6, x)) + AR(®)
=1

where 1(6, x) = log(e"**? - 1) — (Wx + b) - y(x)

14

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

1.3.2 Training Algorithm: Gradient Descent Based Methods

We will introduce stochasic gradient descent method in next part. Let us start with
a calculus question. What is the fastest descent direction of a function?
A function f : R” — R!. For x € R"

JO) = flxr,...x0)
The partial derivative w.r.t. x|

of .. fGxa+hxa,.. X)) = fixi, X, %) f(x+ hey) — f(x)
— = lim = lim
axl h—0 h h—0 h

so the partial derivative w.r.t. x;

Of _ o Jlathe) = f)
Tl 111 1 I e ————
ﬁxl h—0 h
The gradient of f w.r.t x
of of -
Vf=(—,..., .
f (ax, 6xn)

Consider f(x + tI) where t € R! and I € R" with ||l||, = 1.

> 0 f ascends along direction /

0
(1.48) a_tf (x+ tl)|f:0 { < 0 f descends along direction [

By chain rule, the derivative

6 n af
— th) = —_ l,‘.
T ; ax;
The fastest descend direction is [= —%. (Hint for proof: Cauchy-Schwarz inequal-

ity)
Consider an optimization problem: find min f(x). We solve it by iterative
method. Starting from initial point x°. How to get x"*! from current point x"?
Gradient descent method (steepest descend)

(1.49) K= -, V™, m=0,1,2,...

Here n,, is called learning rate.
A machine learning problem

1 N
fw=ﬁ;nm

where N is too large (e.g. 10%) to compute a full gradient.

15

1.3. NOTES FOR 3RD DAY OF THE FIRST WEEK

Stochastic gradient descent (SGD) method. Pick j,, € {1,2,..., Njrandomly,

and
xm+l — .Xm _ T]mejm(Xm)

Mini-batch method. Pick a index set {i}, i2,...,i} € {1,2,...,N}, and

xm+1 = X" = nmvf(xm)

where Vf(x™) = 1 ZI;:I Vfi(x™).

16

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

1.4 Notes for 4th day of the first week

For Logistic regression, let us consider the data set as
D ={x;,yj}, j=1:N.

Here we assume that there are k-class:
{xj:j=1:N}=U A,

where
x;€Aj =y =y(x;) = e

Here y; is called the label of data x;.
The final problem for a machine learning model is:

min L(8),

with data set can be split as training data, validation data and test data. The test
accuracy 1is the criterion for the performance of the machine learning model and
algorithm.

1.4.1 Gradient Descent (GD) Method
Let us consider the objective (loss) function as:
L(0),
if we apply some iterative methods, we will have
,0', ... 0", 0m! ...
We know that L(6™ + al) descent most rapidly along —VL(6™), i.e.
gt = 9" — 1, VL(E™),

where 7, is called the step size or learning rate.

1.4.2 Understand GD from the Viewpoint of Dynamic System

Generally speaking, we hope to find the stationary point for the loss function, i.e.
(1.50) VL") = 0.

Consider a dynamical problem:

(1.51) 0(r) = =VL(0),

17

1.4. NOTES FOR 4TH DAY OF THE FIRST WEEK

which is a simple ordinary differential equation (ODE). Then the optimality condi-
tion (1.50) is understood as the steady state solution of the above ODE, i.e.

6" = lim 6().

t—00

That is to say,
0=6"=-VL®#),

thus we have
VL) =0,

which is the optimality condition in (1.50).
Numerical ODE

The fundamental numerical scheme for solve the above ODE (1.51) is the forward
Euler scheme. In that scheme, we approximate the time derivative with difference:

6™ +m) — 6(™)

(1.52) (™) ~ (n — 0).

Take this into the above ODE (1.51), we have

O +m) =60 _grem),

This leads to the same scheme of gradient descent:

ot = o — 1, VL@O™).

1.4.3 Stochastic Gradient Descent (SGD)

Let us recall that the loss function of a general machine learning problem:
1 &
LO) = Z] €6; %1,),

for example:
£6; x,y) = log(e™™*? - 1) — (wx + b) - y + AR(6).

From the consideration of computation cost, we can compute the gradient with some
approximation scheme VL(6). So, the final scheme can be:

(1.53) " = " — 5, VL(®).

Generally speaking, we have the next two forms of SGD:

18

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

1. SGD with replacement.
Randomly pick B,, € D,
By = {xi, - LX),

we can compute the approximated gradient as

VL") = % Z V@ x).

XEB,

Then we do the SGD as (1.53).

2. SGD without replacement (shuffle SGD).
In each epoch, we shuffle the data set D first, and then split this set into % mini-
batch in order, i.e.

¥ opl
D=U_B.
Then the SGD in this epoch is applied as:
1
0 —0-n-) VL@O;x), for [=12,---,
— nSZ (6; x) or

xeB!

N
<

Remark 1. Let us make some brief statements about SGD method.

1. SGD is not “consistent”.
The goal of a general optimization algorithm is to find the next stationary point,

" — 0" = argmin L(6),

where we also have

VL) = 0.
Thus, if we have 6" = 6%, we call the “consistence” as that we can have "' =
O+,
e Full GD.

If " = 6%, we have VL(6™) = VL(6") = 0. Thus, we have
"t =" -, VL™ = 6"
e SGD.If@" = 6%, we have VL(#") = VL(6*) # 0. Thus, if we want
gl = 9" — 1, VLE™) — 6",

we need to make 1, — 0.
2. The size of the mini-batch s = |B|.
a) s = N, this is the full GD which is not good because of its poor generaliza-
tion accuracy.
b) s = 1, this will cause x;-outlier which means the noise or incorrect data may
cause bad effect.
c) s should be chosen with an appropriate size.

19

1.4. NOTES FOR 4TH DAY OF THE FIRST WEEK

1.4.4 Non-linearly Separable

If D ¢ R? is not linearly separable, but “separable” namely, there exists a continuous
function:
¢:RI- R,

such that
{Ai=¢A):i=1:k),

are linearly separable. Here ¢ is often called feature mapping.
For general assumptions, we assume that

DcQ,

which is a bounded set and note Q as the closure of Q. For simplicity, we can also
assume that Q = (0, 1)%.

Let us consider ¢ is continuous on Q (¢ € C(2) = set of all continuous functions
on Q). Now, there is an natural question that

Is there a “good” function space V such that for any ¢ € C(2) we have
lim ¢ = gullc@) = 0.

for ¢, € V.

Here

lp = Pullc@) = max lp(x) — Pn(X)].
XE
The first example of V is
Vpoly = {all polynomials on Q in R%}.

Theorem 4 (Weierstrass-Stone Theorem). For any ¢ € C(Q), there exists a se-
quence of polynomials p, € Vpoly such that

lim [1¢ = palic@) = 0.

That is to say .
Violy = C(Q).

However, we can see that for any polynomial p,(x) of degree n for x € R? the

number of coefficient of p, is

n+d
n

) —c,

which is huge if d > 1. This is also known as the curse of dimensionality.

20

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

1.4.5 Deep Neural Network (DNN) Function

From now on, we are going to talk about models of deep learning. The first model
that we will introduce is the deep neural network (which is also called forward neural

network or fully connected neural network).
Actually, there are only two main components of DNN models:

1. Linear mapping:
Wx+b:RY > R,

as W e R"*d gnd b € R™,
2. Activation function:

c:R'—> Rl,
and o(x) = (0(x1), - -+, 0(x0)) "

Thus, we can construct a function from R? to R” as:
(x) = W40'{W30'{W20'{W10'{W0x+ bo} + bl} 4 bZ} + b3} b

This is called a 4-th layer DNN model.

21

1.5. NOTES FOR 5TH DAY OF THE FIRST WEEK

1.5 Notes for Sth day of the first week

1.5.1 Recall for Last Lecture
Feature Mapping
There exists a continuous function:
¢: R R,

such that
{Ai=¢A):i=1:k),

are linearly separable. Here ¢ is often called feature mapping.

Weierstrass-Stone Theorem

That is to say, what we need is to approximate this continuous feature mapping ¢.
First of all, let us recall the Weierstrass-Stone theorem.

Theorem 5 (Weierstrass-Stone Theorem). For any ¢ € C(Q) (i.e. ¢ is continuous
on a compact (bounded and closed) set in R?), there exists a sequence of polynomials
Dn € Vpoly such that

lim [l¢ = palic@) =0

That is to say
Vpoly = C(£).

There is an constructive proof by the Bernstein polynomial for any f(x) €
C([0,1]):

Sk
Bi(f) =), f(;)(Z)ﬁ(l —0" > (), (n - o).
k=0

Homework 6 Take some continuous functions f € C([0, 1]), then plot f and B,(f)
for some n.

1.5.2 Deep Neural Network Functions
Just as what we mentioned before, there are two main components of DNN models:
1. Linear mapping:
Wx+b: R RY,

as W e R%*d gnd b € R%,
2. Activation function:

O'ZRIHRI,

and o(x) = (0(x1),- -+ ,0(x2))".

22

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Then we can define a DNN function as:
Wox + % e R%,
x' = o(Wox +b°) e R,
Wix! +b! e RY,

X = c(W'x' +b) e R,

d(x) = Whxl + bt e R%(= RM).

We call this as a L-th layer DNN function.

1.5.3 Activation Functions

An general activation function(must be nonlinear) is
oc:R—-R.

The Heaviside function is

0 ifx<0,
H(x) = .
1 ifx>0.

The biggest problem for this activation function is that this function is not con-
tinuous which will cause huge difficult in training phase.

The sigmoid function:
1 0, x > —o0,
q
1+e* 1, x > +oo.

This function can be seen as the smooth approximation of Heaviside function.
This activation function was very popular in shallow neural network in about
1990s. Now, this activation function is also often used in RNN or some NLP
tasks.

Currently, the most used activation function in DNN and CNN is “Rectified Lin-
ear Unit” (ReLU):

s(x) =

ReLU(x) = max(0, x).

There are many interesting properties of ReLU function:

23

1.5. NOTES FOR 5TH DAY OF THE FIRST WEEK

1. ReLU is a piecewise linear function. Thus, DNN with this activation function
is always a piecewise linear function.
2. The connection of ReLLU and Heaviside.

(1.54) iReLU(x) = H(x).
dx

3. Recently, there are huge research works about the approximation properties
of DNN with ReLLU activation function see [1, 2, 3].

Here is a simple diagram for a general DNN structure:

hidden layer 1 hidden layer 2 hidden layer 3

input layer

weights.
inputs

x;

activation o o
functon R
net input e .
net, -
J o
" o4 .
activation h

transfer
function

i
threshold

Sigmoid RelLU

Fig. 1.4. A General Structure of DNN

1.5.4 Special Case: 1-hidden Layer

First, let us define the so-called 1-hidden layer (shallow) neural network.
Definition 8. The 1-hidden layer (shallow) neural network is defined as:

N
DNN; = {¢ : ¢(x) = > aio(wix+b)+c, NeN*).

i=1

To consistent with above notation, we can write it as:
¢=Wxl+b' =(ay, - ,an)c(Wox + b°) + ¢ € DNN;.

The first question about DNN; is about the approximation properties for any
continuous functions. Here we have the next theorem:

24

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Theorem 7 (Universal Approximation Property of Shallow Neural Networks).
Let Q be bounded, if any f € C(Q), there exists a sequence ¢, € DNNy such that

max |¢,(x) — f(x)) > 0, n— oo.
xeQ

This provide that o is not a polynomial. On the other hand, let o be a non-polynomial
Riemann integrable function and o € L, (R) then we have

DNN, = C(Q).

Before the proof, let us give some notation. We use P,.(R?) to define the polynomials
of d-variables of degree less than m. Let & = (a1, - - - , @7)(@; non-negative integers),
we note |a| = 27:1 a; and

Q g az_.. Qg
X —xlxz)Cd.

Lemma 8. Let 0 € C*(Q) (i.e. o is infinitely differentiable) and is not a polynomial,
then for any k > O there exists t; € R such that

a®) #0.

Now we are going to give the proof of
Proof. If o is a polynomial, say o € P, (R), then we have that

DNN; c P,,(R9).

Thus, DNN; cannot approximate polynomial of degree bigger than m + 1. This im-
plies that o cannot be polynomial if DNN; has the approximation property.
Now we prove that DNN; = C(Q) if o is not a polynomials.

Case 1 First, let us assume that oo € C*(€Q).
Fact 1: We have the next relation:

0 , 3 o |
Al (c(wx + D)) lw=0 = o' (Wx + b)_a[w],. (wx + b) = 0’ (Wx + b)xilw=o.

That is to say,

0 ,
m (o(wx + b)) ly=0 = o’ (D)x;.

By the lemma 8, there exists a b € R such that
o' (b) #0.
Fact 2: By using the definition of derivative, we have

1,3, _
0 wxt b) hyoo = fim SO XD IO,
6[W]l n—oo 1 n—oo

n

25

1.5. NOTES FOR 5TH DAY OF THE FIRST WEEK

where |
¢n(x) =nl|o(—e; - x + b) — o(b)] € DNN;.
n

This leads to the result that
o’ (b)x; = lim ¢,(x) € DNN;,
because of the definition that
DNN; = DNN; U{f : f = lim ¢,(x). ¢, € DNN;}.

Follow there facts, we know that
0'/(19))6,' € DNN;,

this leads to
x; € DNNy,

because [0 (b)] ™ pn(x) = x;.
Thus we have
62

Tname; T+ O b0 = TP B

Using the Lemma 8 again, there exists a b € R such that
@) #0.

This leads to
X1X2 € DNN].

Similarly, we can prove that

x{'x5? -+ xj* € DNN.
This proves that DNN; can approximate any polynomials. Combine with the Weier-
strass theorem, DNN; can approximate any continuous functions.

Then we will finish the proof for any o as a non-polynomial Riemann integrable
function and o € L} (R).

d

26

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

1.6 Notes for 6th day of the first week

1.6.1 Recall for Last Lecture
Deep Neural Network
An example of DNN functions can be written as
#(x,0) = Wo(W2o(W'o(Wx + B°) + b") + b*) + b°
0=W, b, Wb, W2, b%, W, b*)
The DNN functions with one hidden layer is defined as

N
DNN\(0) = {¢: ¢ =)" aio(wix + b))
i=1

Theorem 8. DNN, (o) is dense in C([0, 11%) & o is NOT a polynomial.

We need to proof:
If o is not a polynomial. For any continuious function f € C(Q), there exists a
sequence {¢,} € DNNj, such that:

lim max |¢n(x) = f(0] =0

n—eo e
Idea:

casat € C*(R).
case? is Riemann integrable.

Properties(Homework)

It reproduces identity map. (i.e. x € DNN;(0))

DNN;(0) c DNN;(0), forl < L

Functions in DNN/ (o) are continuous and piecewise linear.

Any continuous piecewise linear function can be written as a DNN function.
For d = 2, one may plot some examples, for RY = | J D;, D; is polyhedron and ¢
is linear on each D;.

Ll

1.6.2 Application to image classification

Given {Ai};‘:1 c R?, We look for a feature map ¢ € DNN;, with the coefficient 6, such
that A; = {¢(A;, 0)} are linear separable.

DNN + Logistic Regression — Nonlinear models(non-polynomial) s
Non-convex optimization problem.

27

1.6. NOTES FOR 6TH DAY OF THE FIRST WEEK

Fig. 1.5. A piecewise linear function obtained from DNN,

1.6.3 Image Classification

In general, we have two kinds of images, gray image and color image.
Gray image: g : [0,11> - R!, 0 < g < 255

Color image(R.G.B.): g : [0,1]> - R3,0 < g <255

After discretizing the gray picture, we get a 2-d discrete function:

{gij:1<i<m1<j<m
and for color image, we we are going to get three of these functions.
Image as a matrix or tensor

The tensor transformed from image has three dimension (i, n, ¢). c is called channel.

(1.55) _ [1, grayimage: g = (g;;) C R
(1.56) - 3, colored image: g = (g; jx) C R"™"™¢

Edges and Convolution

We are supposed to find a linear mapping 6(g) = Wg + b which can distinguish edges
from images, and here is an simple example:

L. [6(9)]i; = gij+1 — &i,j¥i, J
2.

0, (i, j) is away from the bar

(1.57)

(1.58) (0] = gis1,j — &i,j = {

+1, (i, j) is at or near the bar

28

CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Fig. 1.6. The Edge

(a) This is a linear mapping.
(b) This is not fully connected.
(c) This will use specail convolution filter.

Let see an example for a 3 X 3 convolution.

kernel
0-10
-1 4 -1}],

0-10

K =

then
(K*g)ij=48i;— 8i-1,j — 8i+1,j — &ij—1 — &i,j+1-

Here is a simple example about the index.

29

1.6. NOTES FOR 6TH DAY OF THE FIRST WEEK

(i-1,j-1) (i)-1) (i+1,j-1)
(i-1,j) (i) (i+1,j)
(i-1,j+1) (,j+1) (i+1,j+1)

Fig. 1.7. The subscript

Generally we have, if

ki1 ko1 ki1
K=|kio koo kio |,
k_11 kot ki

then we have
(K * g)i,j = Z gi+s,j+zks,z'

—1<s,<1

Remark 2. If (i, j) is on the boundary, we need to ”padding”, which means to extend
g outside of the image. There are three common methods:
(1) zero padding (2) periodic padding (3) reflection padding

You are supposed to implement a CNN algorithm.

g =6"xg,
for i=1:n,
gi_aloo.ong

30

2

Supplemental Material: Convolution Filters

In this chapter, we will give a brief description how convolution operations are used
for image processing.
One useful description can be found in the following link:
http://aishack.in/tutorials/image-convolution-examples/

2.1 Examples of convolution

Convolutions is a technique for general signal processing. People studying electri-
cal/electronics will tell you the near infinite sleepless nights these convolutions have
given them. Entire books have been written on this topic. And the questions and the-
orems that need to be proved are [insurmountable]. But for computer vision, we’ll
just deal with some simple things.

A convolution lets you do many things, like calculate derivatives, detect edges,
apply blurs, etc. A very wide variety of things. And all of this is done with a ”convo-
lution kernel”.

2.2 Calculation with convolutions

The most direct way to compute a convolution would be to use multiple for loops.
But that causes a lot of repeated calculations. And as the size of the image and kernel
increases, the time to compute the convolution increases too (quite drastically).

Techniques haves been developed to calculate convolutions rapidly. One such
technique is using the Discrete Fourier Transform. It converts the entire convolution
operation into a simple multiplication. Fortunately, you don’t need to know the math
to do this in OpenCV. It automatically decides whether to do it in frequency domain
(after the DFT) or not.

2.3. IMAGE CONVOLUTION EXAMPLES

2.3 Image convolution examples

A convolution is very useful for signal processing in general. There is a lot of com-
plex mathematical theory available for convolutions. For digital image processing,
you don’t have to understand all of that. You can use a simple matrix as an image
convolution kernel and do some interesting things!

2.3.1 Simple box blur

! Here’s a first and simplest. This convolution kernel has an averaging effect. So you
end up with a slight blur. The image convolution kernel is:

1/9{1/9(1/9
1/9(1/9(1/9
1/9(1/9(1/9

Note that the sum of all elements of this matrix is 1.0. This is important. If the
sum is not exactly one, the resultant image will be brighter or darker.
Here’s a blur that I got on an image:

Ol— O|—= O|—
Ol— QO|—= O|—
Ol— O|—= O|—

(a) image (b) filter (c) result

"The following examples are from the website, http://aishack.in/tutorials/image-
convolution-examples/

32

CHAPTER 2. SUPPLEMENTAL MATERIAL: CONVOLUTION FILTERS

O|— Ol—= O|—
Ol—= O|—= O|—
O|—= Ol= O|—

(d) image (e) filter (f) result

Fig. 2.1. A simple blur done with convolutions

33

2.3. IMAGE CONVOLUTION EXAMPLES

2.3.2 Gaussian blur

Gaussian blur has certain mathematical properties that makes it important for com-
puter vision. And you can approximate it with an image convolution. The image
convolution kernel for a Gaussian blur is:

18 32 |18 |5
18|64 (100(64 (18
100{100|32
18]64 |100(64 |18
18 (32 |18 |5

[=lk=lk=1E% k=l Ek=]k=}
W
[\)
—
o
S
[=lk=lk=]1E% k=] k=] K=}

Here’s a result that I got:

00 0 5 0 00
0 5 18 32 18 5 0
0 18 64 100 64 18 0O
5 32 100 100 100 32 5
0 18 64 100 64 18 0
0 5 18 32 18 5 0
00 0 5 0 00

(a) image (b) filter (c) result

00 0 5 0 0
0 5 18 32 18 5§
8 64 100 64 18
32 100 100 100 32
8 64 100 64 18
18 32 18 5

o0 0 5 0 0

o o o wo oo

(d) image (e) filter (f) result

Fig. 2.2. A Gaussian blur done with convolutions

34

CHAPTER 2. SUPPLEMENTAL MATERIAL: CONVOLUTION FILTERS

2.3.3 Line detection with image convolutions

With image convolutions, you can easily detect lines. Here are four convolutions to

detect horizontal, vertical and lines at 45 degrees:

-1]-1 (-1 -1 2 |1
2|2 |2 1002 | -1

-1 -1]-1 -1 2|1
Horizontal lines Vertical Enes
1]-1| 2 2 -1
1| 2 1 1] 2 1
2 1|-1 1|-1| 2
45 dagres lines 135 degree lines

-1 -1 -1
2 2 2
-1 -1 -1
(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.3. A horizontal line detection done with convolutions

35

2.3. IMAGE CONVOLUTION EXAMPLES

In Lena,the black background is the original result, the white background is ob-
tained by subtracting the original result from 255, the same below.

-1 2 -1
-1 2 -1
-1 2 -1
(a) image (b) filter () result

(e) result

Fig. 2.4. A vertical line detection done with convolutions

-1 -1 2
-1 2 -1
2 -1 -1
(a) image (b) filter (c) result

36

CHAPTER 2. SUPPLEMENTAL MATERIAL: CONVOLUTION FILTERS

(d) image (e) result

Fig. 2.5. A 45 degress line detection done with convolutions

2 -1 -1
-1 2 -1
-1 -1 2
(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.6. A 135 degress line detection done with convolutions

37

2.3. IMAGE CONVOLUTION EXAMPLES

2.3.4 Edge detection

The above kernels are in a way edge detectors. Only thing is that they have separate
components for horizontal and vertical lines. A way to combine” the results is to
merge the convolution kernels. The new image convolution kernel looks like this:

-1}-1}-1
-1(8 |-1
-1]-11]-1

Below result I got with edge detection:

-1 -1 -1
-1 8 -1
-1 -1 -1
(a) image (b) filter (c) result

i

(d) image (e) result

Fig. 2.7. A edge detection done with convolutions

38

CHAPTER 2. SUPPLEMENTAL MATERIAL: CONVOLUTION FILTERS

2.3.5 The Sobel Edge Operator

The above operators are very prone to noise. The Sobel edge operators have a
smoothing effect, so they’re less affected to noise. Again, there’s a horizontal com-
ponent and a vertical component.

-1 | -2 | -1 -1 | o 1

o 1] [1] -2 [1] 2

1 2 1 -1 1] 1
Horizontal Vertical

On applying horizontal component in image , the result was:

-1 -2 -1
0 0 O
12 1
(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.8. A horizontal sobel edge operator done with convolutions

On applying vertical component in image , the result was:

39

2.3. IMAGE CONVOLUTION EXAMPLES

-1 0 1 /
-2 0 2 > N ‘
-1 0 1

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.9. A vertical sobel edge operator done with convolutions

40

CHAPTER 2. SUPPLEMENTAL MATERIAL: CONVOLUTION FILTERS

2.3.6 The laplacian operator

The laplacian is the second derivative of the image. It is extremely sensitive to noise,
so it isn’t used as much as other operators. Unless, of course you have specific re-
quirements.

0|-1 0 -1 (-1] -1

;14 | -1 -1 8 |-1

0|-1] -1(-1]-1
The laplacian cperator The laplacian operator

(include diagonals)

Here’s the result with the convolution kernel without diagonals:

0 -1 0
-1 4 -1
0O -1 0
(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.10. A laplace operator done with convolutions

The result with the convolution kernel with diagonals:

41

2.3. IMAGE CONVOLUTION EXAMPLES

(a) image (b) filter

(d) image

(c) result

(e) result

Fig. 2.11. A laplace operator include diagonals done with convolutions

42

CHAPTER 2. SUPPLEMENTAL MATERIAL: CONVOLUTION FILTERS

2.3.7 The Laplacian of Gaussian

The laplacian alone has the disadvantage of being extremely sensitive to noise. So,
smoothing the image before a laplacian improves the results we get. This is done
with a 5x5 image convolution kernel.

0]-1{-2-1]0
-1]-2{16-2]-1

The result on applying this image convolution was:

0 -1 -2 -1 0
-1 =2 16 -2 -1
0 -1 =2 -1 ©
00 -1 0 ©
(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.12. A Laplacian of Gaussian operator done with convolutions

43

2.3. IMAGE CONVOLUTION EXAMPLES

2.3.8 Summary

You got to know about some important operations that can be approximated using an
image convolution. You learned the exact convolution kernels used and also saw an
example of how each operator modifies an image. I hope this helped!

44

References

[1] J. He, L. Li, J. Xu, and C. Zheng. Relu deep neural networks and linear finite
elements. arXiv preprint arXiv:1807.03973, 2018.

[2] Q. Wang and W. E. Exponential convergence of the deep neural network approx-
imation for analytic functions. arXiv preprint arXiv:1807.00297, 2018.

[3] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural
Networks, 94:103-114, 2017.

	An Introduction to Machine Learning and DNN
	Notes for 1st day of the first week
	Notes for 2nd day of the first week
	Notations
	Linearly separable sets
	Other notions of linearly separable sets
	Logistic regression
	Introduction to Logistic regression

	Notes for 3rd day of the first week
	Logistic Regression
	Training Algorithm: Gradient Descent Based Methods

	Notes for 4th day of the first week
	Gradient Descent (GD) Method
	Understand GD from the Viewpoint of Dynamic System
	Stochastic Gradient Descent (SGD)
	Non-linearly Separable
	Deep Neural Network (DNN) Function

	Notes for 5th day of the first week
	Recall for Last Lecture
	Deep Neural Network Functions
	Activation Functions
	Special Case: 1-hidden Layer

	Notes for 6th day of the first week
	Recall for Last Lecture
	Application to image classification
	Image Classification

	Supplemental Material: Convolution Filters
	Examples of convolution
	Calculation with convolutions
	Image convolution examples
	Simple box blur
	Gaussian blur
	Line detection with image convolutions
	Edge detection
	The Sobel Edge Operator
	The laplacian operator
	The Laplacian of Gaussian
	Summary

	References

