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1

An Introduction to Machine Learning and DNN

1.1 Notes for 1st day of the first week

The most content of this section is on the slides, here is just some supplement for the
slides.

1. Heaviside function.

(1.1) H(x) =

1, x > 0,
0, x ≤ 0.

2.

(1.2) s(x) =
1

1 + e−x →

0, x→ −∞,
1, x→ +∞.

3. Rectified linear unit.

(1.3) ReLU(x) = max{0, x} =

x, x ≥ 0,
0, x < 0.

Notice that

(1.4)
d
dx

ReLU(x) = H(x).

Given a vector x, we define two kinds of operations. One is linear operation
which maps x to wx + b, while another operation is activation which maps x to σ(x)
with an activation function σ.

Deep neural network can be regarded as compositions and combinations of the
above two operations.



1.2. NOTES FOR 2ND DAY OF THE FIRST WEEK

1.2 Notes for 2nd day of the first week

1.2.1 Notations

We use Rd to denote the d-dimensional real vector space, and use Rk×d to denote the
(k × d)-dimensional real matrix space. For example,

(1.5) x =


x1
x2
· · ·

xd

 ∈ Rd.

(1.6) W =


w1
w2
· · ·

wd

 =


w11 w12 · · · w1d

w21 w22 · · · w2d

· · ·

wk1 wk2 · · · wkd

 ∈ Rk×d.

where wi = (wi1 wi2 · · · wid) ∈ R1×d.
Given W ∈ Rk×d and b ∈ Rd, a linear function f : Rd → Rk can be defined as

(1.7) f (x) = Wx + b =


w1x + b1
w2x + b2
· · ·

wk x + bk

 ∈ Rk, ∀x ∈ Rd.

In Rd, given w ∈ Rd, b ∈ R, the point set {x : wx + b = 0} is called a hyperplane,
or (d − 1)-dimensional hyperplane. A hyperplane is a point in a 1-d space, a straight
line in a 2-d space and a plane in a 3-d space.

1.2.2 Linearly separable sets

Definition 1. The two sets A1, A2 ⊂ R
d are linearly separable if and only if there

exists a hyperplane

(1.8) H0 = {x : wx + b = 0},

such that wx + b > 0 if x ∈ A1 and wx + b < 0 if x ∈ A2.

A intuitive explanation of the definition is that two sets are linearly separable iff they
can be separated by a hyperplane. But when it comes to the multi-class case, we
don’t have such intuitive explanation.

Definition 2 (Linearly Separable). A collection of subsets A1, ..., Ak ⊂ R
d are lin-

early separable if there exists

6



CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Fig. 1.1. Two linearly separable sets

(1.9) W =


w1
...

wk

 ∈ Rk×d, b =


b1
...

bk

 ∈ Rk,

such that, for each 1 ≤ i ≤ k and j , i

(1.10) (Wx + b)i > (Wx + b) j, ∀x ∈ Ai,

or

(1.11) wix + bi > w jx + b j, ∀x ∈ Ai.

Lemma 1. Assume that A1, ..., Ak are linearly separable and θ = (W, b) where W ∈
Rk×n and b ∈ Rk satisfy (1.11). Define

(1.12) Γi(θ) = {x ∈ Rn : (Wx + b)i > (Wx + b) j, ∀ j , i}

Then for each i,

(1.13) Ai ⊂ Γi(θ)

Fig. 1.2. linearly separable sets in 2-d space while k = 3

We can obtain many facts of linearly separable sets in this lemma.
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1.2. NOTES FOR 2ND DAY OF THE FIRST WEEK

1. Denotes ∂Γi(θ) as the boundary of Γi(θ), and the union of all boundaries ∂Γ as

(1.14) ∂Γ =

k⋃
i=1

∂Γi(θ)

then we have

(1.15) Γ1(θ) ∪ Γ2(θ) ∪ · · · ∪ Γk(θ) ∪ ∂Γ = Rd,

where Γi(θ) ∩ Γ j(θ) = ∅ and ∂Γ is a set of measure zero.
This means that most points of Rd will be attached to a unique class unless a set
of measure zero.

2. Each Γi(θ) is a polygon whose boundary consists of hyperplanes

(1.16) Hi j = {(wi − w j) · x + (bi − b j) = 0}, ∀ j , i.

3. Different W, bs can generate the same classifier. The truly effective parameters
are (wi−w j) and (bi−b j) for all i , j which means if we add a same vector to wi

and a same scalar to bi for all 1 ≤ i ≤ k, it won’t affect the result of clssification.

1.2.3 Other notions of linearly separable sets

Definition 3 (All-vs-One Linearly Separable). A collection of subsets A1, ..., Ak ⊂

Rd is all-vs-one linearly separable if for each i = 1, ..., k, Ai and ∪ j,iA j are linearly
separable.

Fig. 1.3. All-vs-One linearly separable sets

This kind of linearly separable is intuitive. That means for each class we have a
hyperplane to separate it from the rest. Easy to observe that it’s equivelant that there
exists a W, b such that

(1.17) wix + bi > 0,w jx + b j < 0,∀x ∈ Ai, j , i, i = 1, · · · , k.

Definition 4 (Pairwise Linearly Separable). A collection of subsets A1, ..., Ak ⊂ R
d

is pairwise linearly separable if for each pair of indices 1 ≤ i < j ≤ k, Ai and A j are
linearly separable.
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CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

This notion is also easy to understand. It means each two different classes can be
linearly separated. Linearly separable sets is a special type of pairwise linearly sepa-
rable sets because it requires some consistency with the parameters. Mathematically,
we can write this consistency as

(1.18) wi j = wik + wk j, bi j = bik + bk j ∀k , i, j.

In 3-class case in 2-d space, that means we need the three lines to intersect at one
point. We can use this to construct some counter-examples which are pairwise lin-
early separable but not linearly separable.

Lemma 2. When k = 2, those three kinds of linearly separable are equivalent.

Proof. Please prove it yourself as an exercise.

Lemma 3. Genarally, all-vs-one linearly separable⇒ linearly separble⇒ pairwise
linearly separable.

Proof. Please prove it yourself as an exercise.

1.2.4 Logistic regression

Assume that we are given k linearly separable sets A1, A2, · · · , Ak ∈ R
d, we define

the set of classifiable weights as

(1.19) Θ = {θ = (W, b) : wix + bi > w jx + b j, ∀x ∈ Ai, j , i, i = 1, · · · , k}

which means those (W, b) can separate A1, A2, · · · , Ak absolutely correctly. And our
assumption implies thatΘ , ∅.
Now we know the existence of linearly classifiable weights. But how can we find one
element inΘ?

Definition 5 (soft-max). Given parameter θ = (W, b), a soft-max mapping p : A →
Rk is a mapping with the following fomulation

(1.20) p(θ, x) =
eWx+b

eWx+b · 1
=

1
k∑

i=1
ewi x+bi


ew1 x+b1

ew2 x+b2

· · ·

ewk x+bk



where Wx + b =


ew1 x+b1

ew2 x+b2

· · ·

ewk x+bk

, 1 = (1 1 · · · 1)T ∈ Rk, and the i-th component pi(θ, x) =

(
k∑

i=1
ewi x+bi )−1ewi x+bi .

The soft-max mapping have several important properties.

9



1.2. NOTES FOR 2ND DAY OF THE FIRST WEEK

1. 0 < pi(θ, x) < 1,
∑

i pi(θ, x) = 1.
This implies that p(θ, x) can be regarded as a probability distribution of data
points which means given x ∈ Rd, we have x ∈ Ai with probability pi(θ, x),
i = 1, · · · , k.

2. pi(θ, x) > p j(θ, x)⇔ wix + bi > w jx + b j.
This implies that the linearly classifiable weights have an equivalent discription
as

(1.21) Θ = {θ : pi(θ, x) > p j(θ, x), ∀x ∈ Ai, j , i, i = 1, · · · , k}

3. We usually use the max-out method to do classification. For a given data point
x, we first use a soft-max mapping to map it to p(θ, x), then we attached x to the
class i = arg max j pi(θ, x).
In probability, that means we pick the label i as the class of x such that x ∈ Ai

has the biggest probability pi(θ, x).

We denote the function

(1.22) P(θ) =

k∏
i=1

∏
x∈Ai

pi(θ, x)

which is called maximum likelihood function in Statistics. We’ll show that can use
this function to help us find some linearly classifiable weights.

Theorem 1. Assume that the sets A1, A2, · · · , Ak are linearly separable. Then we
have

(1.23) {θ : P(θ) >
1
2
} ⊂ Θ.

Proof. This theorem means that if P(θ) > 1
2 , then we must have θ ∈ Θ. It is

equivalent to the proposition that if θ < Θ, we must have P(θ) ≤ 1
2 . So we only need

to prove the second proposition.

For any θ < Θ. There must exist an i0 ,an x0 ∈ Ai0 and a j0 , i0 such that

(1.24) wi0 x + bi0 ≤ w j0 + b j0 .

Then we have

(1.25) pi0 (θ, x) ≤
ewi0 x+bi0

ewi0 x+bi0 + ew j0 x+b j0
≤

1
2
.

Notice that pi(x, θ) < 1 for all i = 1, · · · , k, x ∈ D.
So

(1.26) P(θ) < pi0 (θ, x) ≤
1
2
.
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CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Lemma 4. If θ ∈ Θ, we have

(1.27) lim
α→+∞

pi(αθ) = 1⇔ x ∈ Ai.

Proof.
⇐. Easy to observe that for all x ∈ Ai,

(1.28) lim
α→+∞

pi(θ, x) = lim
α→+∞

1
1 +

∑
j,i

eα[(w j x+b j)−(wi x+bi)]
= 1.

⇒. Easy to observe that for all x < Ai,

(1.29) pi(αθ, x) =
1

1 +
∑
j,i

eα[(w j x+b j)−(wi x+bi)]
≤

1
2
.

This implies that if x < Ai, limα→∞ pi(αθ) , 1 which is equivalent to the proposition
that if limα→∞ pi(αθ) = 1, then x ∈ Ai.

Theorem 2.

(1.30) Θ = {θ : lim
α→+∞

P(αθ) = 1}.

Proof.
⇒. If θ ∈ Θ, we have limα→+∞ pi(αθ) = 1 for all x ∈ Ai. So

(1.31) lim
α→+∞

P(αθ) = lim
α→+∞

k∏
i=1

∏
x∈Ai

pi(θ, x) =

k∏
i=1

∏
x∈Ai

lim
α→+∞

pi(θ, x) = 1.

⇐. If lim
α→+∞

P(αθ) = 1, there must exist one α0 > 0 such that P(α0θ) > 1
2 . From

Theorem 1, we have α0θ ∈ Θ, which means θ ∈ Θ.

1.2.5 Introduction to Logistic regression

Theorem 1 implies that if we can obtain a classifiable weight through maximizing
P(θ), while theorem 2 tells us that P(θ) won’t have a minimum actually.

The design of logistic regression is that maximize P(θ) is equivalent to miniimize
log P(θ) which the second one is more convenient to evaluate the gradient. Mean-
while, we add a regularization term R(θ) to the objective function which makes the
optimization problem has a unique solution.

Mathematically, we can formulate Logistic regression as

(1.32) min
θ
− log P(θ) + λR(θ),

where R(θ) usually equals to ‖θ‖2F =
∑

i, j θ
2
i j.

Lemma 5. −logP(θ) is a convex function.

Lemma 6. If A1, A2, · · · , Ak are linearly separable, − log P(θ) has no global mini-
mum.

Theorem 3. − log P(θ) + λR(θ) has a global minimizer for sufficiently small λ > 0.

11



1.3. NOTES FOR 3RD DAY OF THE FIRST WEEK

1.3 Notes for 3rd day of the first week

1.3.1 Logistic Regression

Recall that the definition of linear separable sets.

Definition 6. A collection of subsets A1, . . . , Ak ⊂ R
d are linearly separable if there

exists

(1.33) W =


w1
...

wk

 ∈ Rk×d, b =


b1
...

bk

 ∈ Rk×1

such that for given 1 ≤ i ≤ k and each j , i

(1.34) (Wx + b)i > (Wx + b) j,∀x ∈ Ai

i.e.,

(1.35) i = arg max
j

(Wx + b) j,∀x ∈ Ai

The probability density function of the distribution over the k categories should sat-
isfy

(1.36) 0 < pi(θ, x) < 1 and
k∑

i=1

pi(θ, x) = 1.

Here, pi(θ, x) is the probability of x in the i-th category, i.e., x ∈ Ai. Then, we intro-
duce a popular choice of the probability density function in classification problems.

Definition 7. The standard softmax function σ : Rk → Rk is defined by the formula

(1.37) (σ(z))i =
ezi∑k

j=1 ez j

for i = 1, . . . , k and z = (z1, . . . , zk)> ∈ Rk

Let z = Wx + b, we obtain

(1.38) p(θ, x) =
eWx+b

eWx+b · 1
=

1
eWx+b · 1


ew1 x+b1

...
ewk x+bk

 =


p1(θ, x)

...
pk(θ, x)


where ez = (ez1 , . . . , ezk )> for any z ∈ Rk and 1 = (1, . . . , 1)> with appropriate dimen-
sion.
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CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Note that A1, . . . , Ak are linearly separable if and only if pi(θ, x) > p j(θ, x) for any
x ∈ Ai, i , j since the exponential function is monotone increasing. Hence logistic
regression will do a “prefect” job.

Denote the set of classifiable weights

Θ =
{
θ = (W, b) : pi(θ, x) > p j(θ, x), x ∈ Ai, i , j

}
.

We proved the following results:

1. θ ∈ Θ if and only if limα→∞ p(αθ) = 1. We note that 0 < pi(θ) < 1 for any θ, so
p(θ) has no global maximum.

2.
{
θ : p(θ) ≥ 1

2

}
⊂ Θ.

In previous section, we already show that we can construct a function with global
maximum by adding a regularization term.

Lemma 7. Assume that R(θ) ≥ 0 is an non-negative function such that

(1.39) Θ∗(λ) = argmax p(θ)e−λR(θ) , ∅, ∀λ > 0

then for sufficiently small λ > 0,

Θ∗(λ) ⊂
{
θ : p(θ) ≥

1
2

}
⊂ Θ.

Proof. Given θ0 ∈ Θ. Let α > 0 be such that

p(αθ0) ≥
2
3

Let λ > 0 be sufficiently small such that

e−λR(θ) >
3
4

For any θ ∈ Θ∗

p(θ)e−λR(θ) ≥ p(αθ0)e−λR(αθ0) >
2
3
·

3
4

=
1
2

Then p(θ) > 1
2 .

Since − log(·) is strictly decreasing, we can transform the maximal problem to a
minimal problem

θ∗ = argmin
{
− log p(θ)e−λR(θ)

}
Recall that

(1.40) argmin g(θ) = {θ∗ : g(θ∗) = min g(θ)} ,

that is, the set of all minimizers. And note that

13



1.3. NOTES FOR 3RD DAY OF THE FIRST WEEK

argmin
{
− log p(θ)

}
, ∅

The definition of Likelihood function

p(θ) = Πk
i=1Πx∈Ai pi(θ, x).

and logarithmic likelihood function

− log p(θ) = − log
(
Πk

i=1Πx∈Ai pi(θ, x)
)

=

k∑
i=1

∑
x∈Ai

(
− log pi(θ, x)

)
=

k∑
i=1

∑
x∈Ai

(
log(e(Wx+b)·1) − (wix + bi)

)(1.41)

Now we consider the “training set” containing all labelled data:

(1.42) ∪k
i=1 Ai = {x j ∈ R

d, 1 ≤ j ≤ N}

For x j ∈ Ai, y j is the corresponding label

(1.43) y j = ei

where ei is the k dimensional vector with the ith component being 1 and the others
being 0. In the classical cat-dog-rabbit problem,

cat← (1, 0, 0)>

dog← (0, 1, 0)>

rabbit← (0, 0, 1)>
(1.44)

For x j ∈ Ai, the label y j = ei, then wix j + bi = (Wx j + b) · y j, then the logarithmic
likelihood function (1.41) can be written as

(1.45) − log p(θ) =

N∑
j=1

log(e(Wx j+b)·1 − (Wx j + b) · y j,

which is so-called cross-entropy loss function.
Logistic regression is to find

(1.46) argmin
{
L(θ, λ) = − log

(
p(θ)e−λR(θ)

)}
and

(1.47) L(θ) = L(θ, λ) =

m∑
j=1

l(θ, x j) + λR(θ)

where l(θ, x) = log(eWx+b · 1) − (Wx + b) · y(x)

14



CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

1.3.2 Training Algorithm: Gradient Descent Based Methods

We will introduce stochasic gradient descent method in next part. Let us start with
a calculus question. What is the fastest descent direction of a function?

A function f : Rn → R1. For x ∈ Rn

f (x) = f (x1, . . . , xn)

The partial derivative w.r.t. x1

∂ f
∂x1

= lim
h→0

f (x1 + h, x2, . . . , xn) − f(x1, x2, . . . , xn)
h

= lim
h→0

f (x + he1) − f (x)
h

so the partial derivative w.r.t. xi

∂ f
∂x1

= lim
h→0

f (x + he1) − f (x)
h

The gradient of f w.r.t x

∇ f = (
∂ f
∂x1

, . . . ,
∂ f
∂xn

)>.

Consider f (x + tl) where t ∈ R1 and l ∈ Rn with ‖l‖2 = 1.

(1.48)
∂

∂t
f (x + tl)

∣∣∣
t=0

{
> 0 f ascends along direction l
< 0 f descends along direction l

By chain rule, the derivative

∂

∂t
f (x + tl) =

n∑
i=1

∂ f
∂xi
· li.

The fastest descend direction is l = −
∇ f
‖∇ f ‖ . (Hint for proof: Cauchy-Schwarz inequal-

ity)
Consider an optimization problem: find min f (x). We solve it by iterative

method. Starting from initial point x0. How to get xm+1 from current point xm?
Gradient descent method (steepest descend)

(1.49) xm+1 = xm − ηm∇ f (xm), m = 0, 1, 2, . . .

Here ηm is called learning rate.
A machine learning problem

f (x) =
1
N

N∑
j=1

f j(x)

where N is too large (e.g. 106) to compute a full gradient.

15
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Stochastic gradient descent (SGD) method. Pick jm ∈ {1, 2, . . . ,N}randomly,
and

xm+1 = xm − ηm∇ f jm (xm).

Mini-batch method. Pick a index set {i1, i2, . . . , ik} ⊂ {1, 2, . . . ,N}, and

xm+1 = xm − ηm∇̃ f (xm)

where ∇̃ f (xm) = 1
k
∑k

j=1 ∇ fi j (xm).

16
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1.4 Notes for 4th day of the first week

For Logistic regression, let us consider the data set as

D = {x j, y j}, j = 1 : N.

Here we assume that there are k-class:

{x j : j = 1 : N} = ∪k
i=1Ak,

where
x j ∈ A j ⇒ y j = y(x j) = ei.

Here y j is called the label of data x j.
The final problem for a machine learning model is:

min
θ

L(θ),

with data set can be split as training data, validation data and test data. The test
accuracy is the criterion for the performance of the machine learning model and
algorithm.

1.4.1 Gradient Descent (GD) Method

Let us consider the objective (loss) function as:

L(θ),

if we apply some iterative methods, we will have

θ0, θ1, · · · , θm, θm+1, · · · .

We know that L(θm + αl) descent most rapidly along −∇L(θm), i.e.

θm+1 = θm − ηm∇L(θm),

where ηm is called the step size or learning rate.

1.4.2 Understand GD from the Viewpoint of Dynamic System

Generally speaking, we hope to find the stationary point for the loss function, i.e.

(1.50) ∇L(θ∗) = 0.

Consider a dynamical problem:

(1.51) θ̇(t) = −∇L(θ),

17
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which is a simple ordinary differential equation (ODE). Then the optimality condi-
tion (1.50) is understood as the steady state solution of the above ODE, i.e.

θ∗ = lim
t→∞

θ(t).

That is to say,
0 = θ̇∗ = −∇L(θ∗),

thus we have
∇L(θ∗) = 0,

which is the optimality condition in (1.50).

Numerical ODE

The fundamental numerical scheme for solve the above ODE (1.51) is the forward
Euler scheme. In that scheme, we approximate the time derivative with difference:

(1.52) θ̇(tm) ≈
θ(tm + η) − θ(tm)

η
, (η→ 0).

Take this into the above ODE (1.51), we have

θ(tm + η) − θ(tm)
η

≈ −∇L(θ(tm)).

This leads to the same scheme of gradient descent:

θm+1 = θm − ηm∇L(θm).

1.4.3 Stochastic Gradient Descent (SGD)

Let us recall that the loss function of a general machine learning problem:

L(θ) =
1
N

N∑
i=1

`(θ; xi, yi),

for example:
`(θ; x, y) = log(ewx+b · 1) − (wx + b) · y + λR(θ).

From the consideration of computation cost, we can compute the gradient with some
approximation scheme ∇̃L(θ). So, the final scheme can be:

(1.53) θm+1 = θm − ηm∇̃L(θ).

Generally speaking, we have the next two forms of SGD:

18
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1. SGD with replacement.
Randomly pick Bm ⊂ D,

Bm = {xi1 , · · · , xis },

we can compute the approximated gradient as

∇̃L(θm) =
1
s

∑
x∈Bm

∇`(θm; x).

Then we do the SGD as (1.53).
2. SGD without replacement (shuffle SGD).

In each epoch, we shuffle the data set D first, and then split this set into m
s mini-

batch in order, i.e.
D = ∪

N
s

l=1Bl.

Then the SGD in this epoch is applied as:

θ ← θ − η
1
s

∑
x∈Bl

∇L(θ; x), for l = 1, 2, · · · ,
N
s
.

Remark 1. Let us make some brief statements about SGD method.

1. SGD is not “consistent”.
The goal of a general optimization algorithm is to find the next stationary point,

θm → θ∗ = arg min L(θ),

where we also have
∇L(θ∗) = 0.

Thus, if we have θm = θ∗, we call the “consistence” as that we can have θm+1 =

θ∗.
• Full GD.

If θm = θ∗, we have ∇L(θm) = ∇L(θ∗) = 0. Thus, we have

θm+1 = θm − ηm∇L(θm) = θ∗.

• SGD. If θm = θ∗, we have ∇̃L(θm) = ∇̃L(θ∗) , 0. Thus, if we want

θm+1 = θm − ηm∇̃L(θm)→ θ∗,

we need to make ηm → 0.
2. The size of the mini-batch s = |B|.

a) s = N, this is the full GD which is not good because of its poor generaliza-
tion accuracy.

b) s = 1, this will cause xi-outlier which means the noise or incorrect data may
cause bad effect.

c) s should be chosen with an appropriate size.
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1.4.4 Non-linearly Separable

If D ⊂ Rd is not linearly separable, but “separable” namely, there exists a continuous
function:

φ : Rd 7→ Rn,

such that
{Ãi = φ(Ai) : i = 1 : k},

are linearly separable. Here φ is often called feature mapping.
For general assumptions, we assume that

D ⊂ Ω,

which is a bounded set and note Ω̄ as the closure of Ω. For simplicity, we can also
assume that Ω = (0, 1)d.

Let us consider φ is continuous on Ω̄ ( φ ∈ C(Ω̄) = set of all continuous functions
on Ω̄). Now, there is an natural question that

Is there a “good” function space V such that for any φ ∈ C(Ω̄) we have

lim
n→∞
‖φ − φn‖C(Ω̄) = 0,

for φn ∈ V .

Here
‖φ − φn‖C(Ω̄) = max

x∈Ω̄
|φ(x) − φn(x)|.

The first example of V is

Vpoly = {all polynomials on Ω̄ in Rd}.

Theorem 4 (Weierstrass-Stone Theorem). For any φ ∈ C(Ω̄), there exists a se-
quence of polynomials pn ∈ Vpoly such that

lim
n→∞
‖φ − pn‖C(Ω̄) = 0.

That is to say
V̄poly = C(Ω̄).

However, we can see that for any polynomial pn(x) of degree n for x ∈ Rd the
number of coefficient of pn is (

n + d
n

)
= Cn

d+n,

which is huge if d � 1. This is also known as the curse of dimensionality.
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1.4.5 Deep Neural Network (DNN) Function

From now on, we are going to talk about models of deep learning. The first model
that we will introduce is the deep neural network (which is also called forward neural
network or fully connected neural network).

Actually, there are only two main components of DNN models:

1. Linear mapping:

Wx + b : Rd 7→ Rn0 ,

as W ∈ Rn0×d and b ∈ Rn0 .
2. Activation function:

σ : R1 7→ R1,

and σ(x) = (σ(x1), · · · , σ(xd))>.

Thus, we can construct a function from Rd to Rn as:

φ(x) = W4σ
{
W3σ

{
W2σ

{
W1σ

{
W0x + b0

}
+ b1

}
+ b2

}
+ b3

}
+ b4.

This is called a 4-th layer DNN model.
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1.5 Notes for 5th day of the first week

1.5.1 Recall for Last Lecture

Feature Mapping

There exists a continuous function:

φ : Rd 7→ Rn,

such that
{Ãi = φ(Ai) : i = 1 : k},

are linearly separable. Here φ is often called feature mapping.

Weierstrass-Stone Theorem

That is to say, what we need is to approximate this continuous feature mapping φ.
First of all, let us recall the Weierstrass-Stone theorem.

Theorem 5 (Weierstrass-Stone Theorem). For any φ ∈ C(Ω̄) (i.e. φ is continuous
on a compact (bounded and closed) set in Rd), there exists a sequence of polynomials
pn ∈ Vpoly such that

lim
n→∞
‖φ − pn‖C(Ω̄) = 0.

That is to say
V̄poly = C(Ω̄).

There is an constructive proof by the Bernstein polynomial for any f (x) ∈
C([0, 1]):

Bn( f ) =

n∑
k=0

f (
k
n

)
(
n
k

)
xk(1 − x)n−k → f (x), (n→ ∞).

Homework 6 Take some continuous functions f ∈ C([0, 1]), then plot f and Bn( f )
for some n.

1.5.2 Deep Neural Network Functions

Just as what we mentioned before, there are two main components of DNN models:

1. Linear mapping:

Wx + b : Rd 7→ Rd0 ,

as W ∈ Rd0×d and b ∈ Rd0 .
2. Activation function:

σ : R1 7→ R1,

and σ(x) = (σ(x1), · · · , σ(xd))>.
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Then we can define a DNN function as:

1.
W0x + b0 ∈ Rd0 ,

2.
x1 = σ(W0x + b0) ∈ Rd0 ,

3.
W1x1 + b1 ∈ Rd1 ,

4.
x2 = σ(W1x1 + b1) ∈ Rd1 ,

5.
· · ·

6.
φ(x) = WLxL + bL ∈ RdL (= Rn).

We call this as a L-th layer DNN function.

1.5.3 Activation Functions

• An general activation function(must be nonlinear) is

σ : R→ R.

• The Heaviside function is

H(x) =

0 if x ≤ 0,
1 if x > 0.

The biggest problem for this activation function is that this function is not con-
tinuous which will cause huge difficult in training phase.

• The sigmoid function:

s(x) =
1

1 + e−x →

0, x→ −∞,
1, x→ +∞.

.

This function can be seen as the smooth approximation of Heaviside function.
This activation function was very popular in shallow neural network in about
1990s. Now, this activation function is also often used in RNN or some NLP
tasks.

• Currently, the most used activation function in DNN and CNN is “Rectified Lin-
ear Unit” (ReLU):

ReLU(x) = max(0, x).

There are many interesting properties of ReLU function:
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1. ReLU is a piecewise linear function. Thus, DNN with this activation function
is always a piecewise linear function.

2. The connection of ReLU and Heaviside.

(1.54)
d
dx

ReLU(x) = H(x).

3. Recently, there are huge research works about the approximation properties
of DNN with ReLU activation function see [1, 2, 3].

Here is a simple diagram for a general DNN structure:

Fig. 1.4. A General Structure of DNN

1.5.4 Special Case: 1-hidden Layer

First, let us define the so-called 1-hidden layer (shallow) neural network.

Definition 8. The 1-hidden layer (shallow) neural network is defined as:

DNN1 = {φ : φ(x) =

N∑
i=1

aiσ(wix + bi) + c, N ∈ N+}.

To consistent with above notation, we can write it as:

φ = W1x1 + b1 = (a1, · · · , aN)σ(W0x + b0) + c ∈ DNN1.

The first question about DNN1 is about the approximation properties for any
continuous functions. Here we have the next theorem:
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Theorem 7 (Universal Approximation Property of Shallow Neural Networks).
Let Ω be bounded, if any f ∈ C(Ω̄), there exists a sequence φn ∈ DNN1 such that

max
x∈Ω̄
|φn(x) − f (x)| → 0, n→ ∞.

This provide thatσ is not a polynomial. On the other hand, letσ be a non-polynomial
Riemann integrable function and σ ∈ L∞loc(R) then we have

DNN1 = C(Ω̄).

Before the proof, let us give some notation. We use Pm(Rd) to define the polynomials
of d-variables of degree less than m. Let α = (α1, · · · , αd)( αi non-negative integers),
we note |α| =

∑d
i=1 αi and

xα = xα1
1 xα2

2 · · · x
αd
d .

Lemma 8. Let σ ∈ C∞(Ω) (i.e. σ is infinitely differentiable) and is not a polynomial,
then for any k ≥ 0 there exists tk ∈ R such that

σ(k)(tk) , 0.

Now we are going to give the proof of
Proof. If σ is a polynomial, say σ ∈ Pm(R), then we have that

DNN1 ⊂ Pm(Rd).

Thus, DNN1 cannot approximate polynomial of degree bigger than m + 1. This im-
plies that σ cannot be polynomial if DNN1 has the approximation property.

Now we prove that DNN1 = C(Ω̄) if σ is not a polynomials.

Case 1 First, let us assume that σ ∈ C∞(Ω).
Fact 1: We have the next relation:

∂

∂[w]i
(σ(wx + b)) |w=0 = σ′(wx + b)

∂

∂[w]i
(wx + b) = σ′(wx + b)xi|w=0.

That is to say,
∂

∂[w]i
(σ(wx + b)) |w=0 = σ′(b)xi.

By the lemma 8, there exists a b ∈ R such that

σ′(b) , 0.

Fact 2: By using the definition of derivative, we have

∂

∂[w]i
(σ(wx + b)) |w=0 = lim

n→∞

σ((0 + 1
n ei) · x + b) − σ(b)

1
n

= lim
n→∞

φn(x),
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where

φn(x) = n
(
σ(

1
n

ei · x + b) − σ(b)
)
∈ DNN1.

This leads to the result that

σ′(b)xi = lim
n→∞

φn(x) ∈ DNN1,

because of the definition that

DNN1 = DNN1 ∪ { f : f = lim
n→∞

φn(x), φn ∈ DNN1}.

Follow there facts, we know that

σ′(b)xi ∈ DNN1,

this leads to
xi ∈ DNN1,

because [σ′(b)]−1φn(x)→ xi.
Thus we have

∂2

∂[w]1∂[w]2
(σ(wx + b)) |w=0 = σ(2)(b)x1x2.

Using the Lemma 8 again, there exists a b ∈ R such that

σ(2)(b) , 0.

This leads to
x1x2 ∈ DNN1.

Similarly, we can prove that

xα1
1 xα2

2 · · · x
αd
d ∈ DNN1.

This proves that DNN1 can approximate any polynomials. Combine with the Weier-
strass theorem, DNN1 can approximate any continuous functions.

Then we will finish the proof for any σ as a non-polynomial Riemann integrable
function and σ ∈ L∞loc(R).
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1.6 Notes for 6th day of the first week

1.6.1 Recall for Last Lecture

Deep Neural Network

An example of DNN functions can be written as

φ(x, θ) = W3σ(W2σ(W1σ(W0x + b0) + b1) + b2) + b3

θ = (W0, b0,W1, b1,W2, b2,W3, b3)

The DNN functions with one hidden layer is defined as

DNN1(σ) = {φ : φ =

N∑
i=1

aiσ(wix + bi)}

Theorem 8. DNN1(σ) is dense in C([0, 1]d)⇔ σ is NOT a polynomial.

We need to proof:
If σ is not a polynomial. For any continuious function f ∈ C(Ω̄), there exists a
sequence {φn} ⊂ DNN1, such that:

lim
n→∞

max
x∈Ω̄
|φn(x) − f (x)| = 0

Idea:

case1σ ∈ C∞(R).
case2σ is Riemann integrable.

Properties(Homework)

1. It reproduces identity map. (i.e. x ∈ DNN1(σ))
2. DNNl(σ) ⊂ DNNL(σ), for l ≤ L
3. Functions in DNNl(σ) are continuous and piecewise linear.
4. Any continuous piecewise linear function can be written as a DNN function.

For d = 2, one may plot some examples, for Rd =
⋃

D̄i, Di is polyhedron and φ
is linear on each Di.

1.6.2 Application to image classification

Given {Ai}
k
i=1 ⊂ R

d, We look for a feature map φ ∈ DNNl, with the coefficient θ, such
that Ãi = {φ(Ai, θ)} are linear separable.

DNN + Logistic Regression −→ Nonlinear models(non-polynomial)
”training”
−−−−−−−→

Non-convex optimization problem.
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Fig. 1.5. A piecewise linear function obtained from DNN2

1.6.3 Image Classification

In general, we have two kinds of images, gray image and color image.
Gray image: g : [0, 1]2 → R1, 0 ≤ g ≤ 255
Color image(R.G.B.): g : [0, 1]2 → R3, 0 ≤ g ≤ 255
After discretizing the gray picture, we get a 2-d discrete function:

{gi, j : 1 ≤ i ≤ m, 1 ≤ j ≤ m}

and for color image, we we are going to get three of these functions.

Image as a matrix or tensor

The tensor transformed from image has three dimension (m, n, c). c is called channel.

c =

{
1, gray image: g = (gi, j) ⊂ Rm×n(1.55)
3, colored image: g = (gi, j,k) ⊂ Rm×n×c(1.56)

Edges and Convolution

We are supposed to find a linear mapping θ(g) = Wg+b which can distinguish edges
from images, and here is an simple example:

1. [θ(g)]i, j = gi, j+1 − gi, j∀i, j
2.

[θ(g)]i, j = gi+1, j − gi, j =

{
0, (i, j) is away from the bar(1.57)
±1, (i, j) is at or near the bar(1.58)

28



CHAPTER 1. AN INTRODUCTION TO MACHINE LEARNING AND DNN

Fig. 1.6. The Edge

(a) This is a linear mapping.
(b) This is not fully connected.
(c) This will use specail convolution filter.

Let see an example for a 3 × 3 convolution.
kernel

K =

 0 −1 0
−1 4 −1
0 −1 0

 ,
then

(K ∗ g)i, j = 4gi, j − gi−1, j − gi+1, j − gi, j−1 − gi, j+1.

Here is a simple example about the index.
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Fig. 1.7. The subscript

Generally we have, if

K =

k−1,−1 k0,−1 k1,−1
k−1,0 k0,0 k1,0
k−1,1 k0,1 k1,1

 ,
then we have

(K ∗ g)i, j =
∑

−1≤s,t≤1

gi+s, j+tks,t.

Remark 2. If (i, j) is on the boundary, we need to ”padding”, which means to extend
g outside of the image. There are three common methods:
(1) zero padding (2) periodic padding (3) reflection padding

You are supposed to implement a CNN algorithm.
g0 = θ0 ∗ g,
for i = 1 : n,

gi = θi ◦ σ ◦ gi+1.
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2

Supplemental Material: Convolution Filters

In this chapter, we will give a brief description how convolution operations are used
for image processing.

One useful description can be found in the following link:
http://aishack.in/tutorials/image-convolution-examples/

2.1 Examples of convolution

Convolutions is a technique for general signal processing. People studying electri-
cal/electronics will tell you the near infinite sleepless nights these convolutions have
given them. Entire books have been written on this topic. And the questions and the-
orems that need to be proved are [insurmountable]. But for computer vision, we’ll
just deal with some simple things.

A convolution lets you do many things, like calculate derivatives, detect edges,
apply blurs, etc. A very wide variety of things. And all of this is done with a ”convo-
lution kernel”.

2.2 Calculation with convolutions

The most direct way to compute a convolution would be to use multiple for loops.
But that causes a lot of repeated calculations. And as the size of the image and kernel
increases, the time to compute the convolution increases too (quite drastically).

Techniques haves been developed to calculate convolutions rapidly. One such
technique is using the Discrete Fourier Transform. It converts the entire convolution
operation into a simple multiplication. Fortunately, you don’t need to know the math
to do this in OpenCV. It automatically decides whether to do it in frequency domain
(after the DFT) or not.
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2.3 Image convolution examples

A convolution is very useful for signal processing in general. There is a lot of com-
plex mathematical theory available for convolutions. For digital image processing,
you don’t have to understand all of that. You can use a simple matrix as an image
convolution kernel and do some interesting things!

2.3.1 Simple box blur

1 Here’s a first and simplest. This convolution kernel has an averaging effect. So you
end up with a slight blur. The image convolution kernel is:

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

Note that the sum of all elements of this matrix is 1.0. This is important. If the
sum is not exactly one, the resultant image will be brighter or darker.

Here’s a blur that I got on an image:

(a) image (b) filter (c) result

1 The following examples are from the website, http://aishack.in/tutorials/image-
convolution-examples/
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(d) image (e) filter (f) result

Fig. 2.1. A simple blur done with convolutions
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2.3.2 Gaussian blur

Gaussian blur has certain mathematical properties that makes it important for com-
puter vision. And you can approximate it with an image convolution. The image
convolution kernel for a Gaussian blur is:

0 0 0 5 0 0 0
0 5 18 32 18 5 0
0 18 64 100 64 18 0
5 32 100 100 100 32 5
0 18 64 100 64 18 0
0 5 18 32 18 5 0
0 0 0 5 0 0 0

Here’s a result that I got:

(a) image (b) filter (c) result

(d) image (e) filter (f) result

Fig. 2.2. A Gaussian blur done with convolutions
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2.3.3 Line detection with image convolutions

With image convolutions, you can easily detect lines. Here are four convolutions to
detect horizontal, vertical and lines at 45 degrees:

Here’s 0,90,45,135 lines detection that I got on an image:

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.3. A horizontal line detection done with convolutions
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In Lena,the black background is the original result, the white background is ob-
tained by subtracting the original result from 255, the same below.

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.4. A vertical line detection done with convolutions

(a) image (b) filter (c) result
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(d) image (e) result

Fig. 2.5. A 45 degress line detection done with convolutions

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.6. A 135 degress line detection done with convolutions
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2.3.4 Edge detection

The above kernels are in a way edge detectors. Only thing is that they have separate
components for horizontal and vertical lines. A way to ”combine” the results is to
merge the convolution kernels. The new image convolution kernel looks like this:

-1 -1 -1
-1 8 -1
-1 -1 -1

Below result I got with edge detection:

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.7. A edge detection done with convolutions
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2.3.5 The Sobel Edge Operator

The above operators are very prone to noise. The Sobel edge operators have a
smoothing effect, so they’re less affected to noise. Again, there’s a horizontal com-
ponent and a vertical component.

On applying horizontal component in image , the result was:

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.8. A horizontal sobel edge operator done with convolutions

On applying vertical component in image , the result was:
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(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.9. A vertical sobel edge operator done with convolutions
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2.3.6 The laplacian operator

The laplacian is the second derivative of the image. It is extremely sensitive to noise,
so it isn’t used as much as other operators. Unless, of course you have specific re-
quirements.

Here’s the result with the convolution kernel without diagonals:

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.10. A laplace operator done with convolutions

The result with the convolution kernel with diagonals:
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(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.11. A laplace operator include diagonals done with convolutions
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2.3.7 The Laplacian of Gaussian

The laplacian alone has the disadvantage of being extremely sensitive to noise. So,
smoothing the image before a laplacian improves the results we get. This is done
with a 5x5 image convolution kernel.

0 0 -1 0 0
0 -1 -2 -1 0
-1 -2 16 -2 -1
0 -1 -2 -1 0
0 0 -1 0 0

The result on applying this image convolution was:

(a) image (b) filter (c) result

(d) image (e) result

Fig. 2.12. A Laplacian of Gaussian operator done with convolutions
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2.3.8 Summary

You got to know about some important operations that can be approximated using an
image convolution. You learned the exact convolution kernels used and also saw an
example of how each operator modifies an image. I hope this helped!
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